MODIS Applications in Environmental Change Researches in the Southeast-Asian Region

Tran Hung and Yasuoka Yoshifumi

1 TECOS, Ministry of Natural Resources and Environment, 62 Chua Lang, Hanoi, Vietnam
 Tel: +84 4 7752506 Fax: +84 4 7750457 E-mail: hungtrung@yahoo.com
2 Institute of Industrial Science, University of Tokyo, Japan

Abstract

This paper gives brief description of the MODIS data acquisition, processing and archiving system at the Institute of Industrial Science, University of Tokyo and our experience in using MODIS data for the last 4 years (2000-2004). The potential as well as difficulty in utilizing MODIS data for scientific applications are then, discussed through 3 environmental change researches in the Southeast-Asian region: vegetation mapping with MODIS NDVI time series; urban heat island mapping with MODIS Land Surface Temperature (LST); and agricultural drought monitoring with the MODIS-based Temperature-Vegetation Dryness Index (TVDI). These preliminary results demonstrated that high-temporal and high-spectral resolution MODIS data is very useful and effective in monitoring environmental/ecosystems changes at a regional scale in the tropical Southeast Asia.

1. Introduction

In addition to the existing satellite receiving systems of NOAA HRPT and GMS S-VISSR, in May 2001, two new X-band satellite reception facilities were installed at the Komaba Research Campus (University of Tokyo, Japan) and at the AIT campus (Bangkok, Thailand), which are used to collect data from MODIS, an electro-optical sensor aboard the TERRA and AQUA satellites. The Yasuoka Lab at the Institute of Industrial Science (IIS) is directly managing the MODIS station at the Komaba campus and regularly archiving MODIS data transferred through network from the AIT station. In near real-time, IMAPP software from the Wisconsin University is used to process routinely level 0 data producing calibrated and geolocated radiances (level 1b) for archiving (Tran et al., 2000; 2001). In addition to providing raw and level 1b data to research community, we also operationally produce selective high-level products such as cloud mask, fire/burned area, 500m-resolution NDVI, 1km-resolution LST, reflectance products and its 8-days and monthly composites for specified regions. MODIS level 0 and level 1b data in the IIS archive are available freely for registered users/researchers. The Yasuoka lab has developed the WebMODIS, a web-based MODIS processing system to distribute rectified level 2+ MODIS data for user-specified rectangular area-of-interest on request through Internet. In summary, the MODIS receiving facilities make it possible to continue and expand our AVHRR-based continental-scale terrestrial ecosystem change researches as well as upgrade our capability for near-real-time data distribution for disaster warning and extreme weather events forecast in the Southern and Eastern Asian (including Indochina) regions.
2. MODIS Researches at the Institute of Industrial Science

The Moderate Resolution Imaging Spectroradiometers (MODIS) on board the TERRA and AQUA satellites provide information about the Earth’s surface in 36 wavebands including visible and near-infrared spectra, SWIR and in thermal range. The TERRA launched (in December 1999) and AQUA satellites (in May 2002) into near-polar sun-synchronous orbits, pass in view of any point on earth 4 times daily at approximately 10:30 & 21:30 and 13:30 & 0:30 local time respectively. The design for land imaging combines and improves upon the strengths of the existing AVHRR sensor including finer spatial resolution as well as high-spectral resolution allowing significantly better atmospheric profiling, atmospheric correction and more accurate LST computation. The frequent and synoptic characteristics together with specially designed atmospheric bands of MODIS offer the alternative to lessen the cloudiness problem in monitoring environmental changes, which is especially helpful in case of tropical climate zone of the Southeast Asia. As improved MODIS time series data are accumulated at the IIS archive over 4-years of operations, numerous environmental researches/environmental monitoring have been carried out at the Yasuoka Lab, University of Tokyo (previously utilized AVHRR data) including:

Near Real-time and Short-term Applications:
For near real-time forecast and warning of extreme events such as volcanoes, forest fire, surface flooding we are generating and distributing (over Internet) fire/burned area product and snow/ice cover.

Ecosystem change researches for specified regions of interest:
- Monitoring forest fires disturbances and their effects to carbon cycle with RS & ecosystem modeling (SimCycle);
- Methane emission estimation from wetlands and paddy fields;
- Estimation of terrestrial carbon fluxes by integrating RS with ecosystems modeling (SimCycle);
- Agricultural crop evapo-transpiration estimation with MODIS and modeling;
- Asian water distribution/flooding mapping using MODIS data;
- Land cover/vegetation mapping & monitoring for continental Asia;
- MODIS for comparative urban environmental changes study (long-term urban land cover changes, urban heat islands, urban climate modeling);
- Regional MODIS DB network cooperation for data exchange and in monitoring the large-scale disasters or extreme weather events.

In addition, we are also experimenting the combined use of high-temporal-resolution MODIS data with high-spatial-resolution data: ETM, ASTER in environmental monitoring and integrating RS data with environmental/ ecological/climate modeling. As our system is still ever evolving, some preliminary results of the environmental researches in the Southeast-Asian region are presented as follows.

3. Selected Preliminary Results

3.1 Vegetation Mapping with MODIS Time Series Data

Vegetation mapping at the regional and global level is very important for understanding the regional and global environment. The availability of high temporal resolution MODIS NDVI data is very useful for mapping the vegetation cover based on dynamic analysis of the temporal patterns of NDVI data. From the IIS MODIS archive, monthly cloud-free composite MODIS NDVI data in the Bangkok region in the dry season (August 2001 - April 2002) were generated and then, a time series was constructed. As Figure 1 shows, the seasonal agricultural lands are clearly distinguished from other land cover types in the Bangkok urbanized region. The
index for temporal signature similarity (TSS) was calculated from patterns of temporal variability of MODIS NDVI values over different months and used in a classification scheme to produce the vegetation map for the area with a reasonable accuracy as shown in Figure 2. For more information on the TSS classification please see Pahari and Yasuoka (1999).

3.2 Monitoring Urban Heat Island (UHI) with MODIS LST data

Rapid urban development involving a large volume of population with increased energy consumption and dense urban infrastructure leads to an inevitable decline in the quality of life as well as urban environment. One of the most well known forms of anthropogenic modification is the phenomenon of urban heating or urban heat island (UHI) effect, causing the local air and surface temperatures to rise several degrees higher than the simultaneous temperatures of the surrounding rural areas. Satellite TIR sensors measuring top of the atmosphere (TOA) radiances, from which brightness temperatures can be derived using Plank’s law provide accurate information on the urban canopy layer (UCL) heat island with much higher spatial resolution as compared to in-situ measurement. MODIS is particularly useful for the land surface temperature (LST) product because of its global coverage, radiometric resolution and dynamic ranges for a variety of land cover types, and high calibration accuracy in multiple thermal bands designed for retrievals of SST, LST and atmospheric properties (Wan, 1999). For 3 selected Southeast Asian cities of Bangkok, Manila and Ho Chi Minh City, urban heat island measurements were monitored from the surface temperature maps at 1-km resolution derived from MODIS thermal data of selected day- and night-scenes acquired during the dry season (September 2001 - April 2002). MODIS LST was derived from the atmospheric corrected 2 thermal bands (bands 31 and 32 in the 10.5-12.5μm spectra) using view-angle dependent split-window LST algorithm for MODIS (Wan, 1999) with reported accuracy of better than 1°K.

It is observed that satellite-based surface UHIs are greatest in the daytime with a maximum in areas of large buildings or paved surfaces and smallest at nighttime due to different surface properties and cooling rates (Figure 3). The urban areas, which are characterized by high albedo and dry (built) surfaces, have significantly higher daytime surface temperature as compared to those of the surrounding rural moist vegetated areas. Using the statistics of the LST maps derived from MODIS day- and night-scenes, the surface UHIs patterns and its seasonal and diurnal variation were explored in both magnitude and spatial extent. The mean rural temperatures were observed as 29.5°C for Bangkok in February, 26.5°C for Manila in November and 30°C for Ho Chi Minh City in February. Bangkok had the highest daytime surface UHI intensity of 8°C followed by Manila 7°C and Ho Chi Minh City 5°C in the dry season. Close associations were found between city size (in terms of population) with the UHIs magnitude and spatial extent, which indicates significant impacts of urbanization on the UHIs problems in the tropical Asia. During the night, the mean rural temperature was cooling down significantly to 22°C in Bangkok and land-sea breeze circulations coupled with differences in surface cooling rates significantly weakened the surface UHI magnitude to 3°C and changed the UHI shape. Strong negative correlations between day-time LST and NDVI were found for all cities as the moisture availability from vegetation allows a larger fraction of the net radiative flux to be balanced by evapotranspiration and by the latent heat flux, thus lowers the sensible heat flux, hence LST. Similarly, it was found the difference in heating and cooling rates over the diurnal cycle as wet paddy fields and perennial vegetations have smaller average day-night fluctuation (4 and 4.9°C respectively) in surface temperature than urbanized areas (more than 5.5°C). In the Bangkok city center, it was observed a signifi-
cant daytime thermal contrast between large parks (e.g., Chatuchak and Lumpini parks) and its urban surroundings reaching 5-6°C in February 2002 (for more details please see Tran and Yasuoka, 2003a; Tran et al., 2003). As the UHI mapping and cause-effect analysis showed encouraging preliminary results, the continued monitoring of UHIs in Asian cities with multi-sensor data (e.g., AVHRR on board the NOAA-12, NOAA-14 and MODIS on AQUA satellites) to better assess the diurnal cycle of urban climates are recommended.

3.3 Monitoring Agricultural Drought with MODIS TVDI

Drought is well recognized as one of the most damaging environmental phenomena leading to sharp decrease in agricultural productions and increase the risk for wild fire. Since droughts cover large areas, it is difficult to monitor them using conventional systems, especially for developing countries with little infrastructure and few resources for continuous monitoring of environmental variables. It is obvious that use of Earth Observation Satellite (EOS) data is potentially of great interest in such contexts. The complementary information in the thermal and the visible/near infrared wavelengths has proven to be well suited to monitoring vegetation status and stress, specifically in relation to water stress (Sandholt et al., 2002). The T_s/NDVI slope is related to the evapotranspiration rate of the surface, to the stomatal resistance of vegetation and areal averaged soil moisture conditions. The location of a pixel in the T_s/NDVI space is influenced by many factors, and a number of studies have been done to provide interpretations and here, isolines can be drawn in the triangle defining the T_s/NDVI space. A dryness index (TVDI) having the values of 1 at the “dry edge” (limited water availability) and 0 at the “wet edge” (maximum evapotranspiration and thereby unlimited water access) can be defined:

$$TDVI = \frac{T_s - T_{s\min}}{a + b*NDVI - T_{s\min}}$$

where $T_{s\min}$ is the minimum surface temperature in the triangle, defining the wet edge, T_s is the observed surface temperature at the given pixel, NDVI is the observed normalized difference vegetation index, and a and b are parameters defining the dry edge modeled as a linear fit to data ($T_{smax} = a + b*NDVI$), where T_{smax} is the maximum surface temperature observation for a given NDVI.

Using the MODIS NDVI and LST time series over the Indochina, the TVDI for selected least-clouded scenes during 2000 - 2003 were computed as shown in Figure 4. Comparatively, the TVDI was found much higher for the agricultural cropland than that of forest area over time. Then, TVDI time series for specified areas (e.g., Dac Lac forest; dry agricultural area in Binh Thuan) were constructed to monitor the surface moistures throughout the dry seasons and over the three years. Figure 5 shows the temporal evolution of the TVDI with an increasing trend toward the end of the dry season, which well conformed observed moistures data at meteorological stations. Between the years, the TVDI were observed significantly higher during the 2002 dry season than that of the 2001 and 2003 dry seasons, indicating the potentiality of using this index in monitoring not only short-term but also long-term agro-climatic variations for the region (Tran and Yasuoka, 2003b). More detailed results as well as continuing research will be discussed at the conference.

4. Concluding Remarks

It has been demonstrated though three application case studies that MODIS data is very useful and effective in monitoring environmental/ecosystems changes at a regional scale in the tropical Southeast Asia. Furthermore, MODIS represents the beginning of a new family of ever-evolving sensors for monitoring the Earth dynamics, which will continue on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) satellites.
Figure 1: Monthly MODIS NDVI time series (August 2001 - April 2002) for the Bangkok region

Figure 2: Vegetation cover map of the Bangkok region classified based on MODIS NDVI time series

Figure 3: Diurnal variations of the surface UHIs for Bangkok, Manila and Ho Chi Minh City in the dry season of 2002
is, therefore, very encouraging and worthwhile to develop an effective scheme to utilize MODIS data in the rapid-developing, dynamic and environmentally vulnerable Southeast-Asian region. There are still a number of difficulties/limitations hampering the utilization of MODIS data (e.g., large data volume, complexity of data format, computing algorithms, cloud coverage in the tropics, etc.) to be addressed. However, it is a firm intention of the authors to work toward the full realization of MODIS and other EOS data potentials (especially in operational applications) addressing important environmental problems for the region in the framework of active regional collaboration.

References

Tran, H., Ochi, S., Nemoto, T., Kitsuregawa, M., and Yasuoka, Y., 2000, Data acquisition and processing system at the Institute of Industrial Science, University of Tokyo. Presented at the 4th International Conference on Direct Broadcast of Earth Observation Data, Scotland (UK).