A New Algorithm to Measure the Details on Objects’ Surfaces using Digital Close-Range Photogrammetry

Elsonbaty, Ahmed and Ebrahim, Mostafa.

1Civil Engineering Department, Faculty of Engineering, Qassim University, Qassim, KSA, on Leave from Engineering College, Assuit University, Egypt.
E-mail: Asronbaty2@yahoo.com
2Civil Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt
E-mail: Mostafa.Ebrahim@Binternet.com

Abstract
The creation of a computer model of an object depends mainly on determining the spatial coordinates of a set of points on its surfaces that describes surfaces of the object. Once a 3D computer model is created, it can be imported into a 3D visualization software, e.g., AutoCAD, 3D Studio, to show the model from different views with its real shape and details of its surfaces. Assigning a camera within the 3D visualization software enables several photos to be taken for the computer model. Measurements can then be taken mainly for the points that have been used to create the model, but the details of the created computer model’s surfaces cannot be measured unless there is an additional condition. The main aim of this research is to derive a new method to measure the details of the object’s surfaces. This can be done by measuring the spatial coordinates of the points describing these details on the visible part of the object’s surfaces from an image that has been taken for the computer model by an assigned camera. Since the curved surfaces are extensively used in architecture (such as cylinders, cones, and hyperboloids), this research considers object surfaces that appear in the photo as quadratic. The information of the set of points used to create the computer model along with the assigned camera parameters will be used as a source data for measuring the details laying on the object’s surfaces. The results of the new algorithm will be obtaining any information, e.g. spatial coordinates, distances, volumes, for the details of the computer model’s surfaces.

1. Introduction
Photogrammetric measurement operations attempt to satisfy, in an optimal manner, several objectives such as precision, reliability, and economy. The ultimate aim of any photogrammetric measurement is the determination of triangulated object point coordinates along with estimates for their precision (OLAGUE, 2002). Three-dimensional models of physical objects are rapidly becoming more affordable in many fields such as inspection, navigation, object identification, visualization, and animation (Abdelhafiz, 2009). Photo realistic computer models obtained from digital photogrammetric techniques are beneficial for several applications. Photogrammetric techniques offer a large potential for the solution of a wide range of measurement tasks in different fields. For certain applications, photogrammetric techniques have meanwhile been accepted as standard measurement techniques (Maas and Hampel, 2006). One of the most important applications using these measuring techniques is the documentation of architecturally significant historical buildings and world heritage (Grimm et al., 2001). The process of generating 3D models consists of several well-known steps: capturing, points recovering, surface reconstruction, texture mapping, and visualization. At the capturing and points recovering steps, the image-based approach, photo-based scanner, and range-based approach (3D laser scanner) can be employed. The image-based technique consists of the following steps:

- Photographing at least two images.
- Determining the interior and exterior orientations of the captured images.
- Measuring the points of interesting features in the images and computing the spatial coordinates of the measured points.

Two years ago, Eos System Inc. presented a new technique called “photo-based scanning” in the field of digital photogrammetry. This technique compares two photos on a patch-by-patch basis to find the best matches. When these optimal matches are found, the already-computed position and orientation information for the photographs is used to compute the location of that patch in 3D space. When a
regular grid of patches is sampled in image 1 and matched to the optimal image positions in image 2, the result is a dense cloud of 3D points. For the limitations of this technique, please refer to Walford, 2010. The range-based technique based mainly on using a laser ray to measure distances. In the laser scan technology, a kind of laser scanner sweeps a laser beam over the object and times how long it takes to return, which provides the distance from the scanner to every sampled point (Walford, 2010). To make measurements of a 3D computer model's surfaces, only the points used in creating the model can be measured. The rest of the surfaces' details cannot be measured because there is no available information about these points unless their image coordinates. Several trials have been done to achieve this target, but each has its limitations; for example, Krause, 1996 has presented what is called mono-plottening technique. Within the mono-plottening technique, the spatial coordinates of object points are determined from a single image by intersecting the respective projection rays with a given surface model. In recent years, similar techniques are applied to combine the terrestrial laser scanner point cloud and the digital image in order to produce the so-called “3D-orthophoto” (Forkert and Glaeseker, 2002) and the “Z-coded true orthophoto (ZOP)” (Jansa et al., 2004). In 2009, Abdelhafiz has developed a new 3D measuring method called “3Dimage” described as small GIS system. In his method, the image pixels represent the features and their corresponding 3D coordinates as the attribute for his system and that was a result of a new fusion technique. The fused data were presented in a two-dimensional environment by mapping the space coordinates onto the digital image. In this research work, we developed a new algorithm to measure the details on the surfaces of computer model. The measurements will be taken from an image that has been taken for the computer model by an assigned camera within 3D Studio software. The points that used in creating the computer model and the assigned camera parameters within 3D Studio software will be used as source data for determining the spatial coordinates of the details points. This new algorithm is unlike the abovementioned trials. It enables taking measurements for any details laying on the computer model surfaces whatever the surfaces are regular or irregular. As the algorithm is applied, just one click on the desired detail point, its spatial coordinates will be obtained. In the next sections, the new algorithm will be described in details.

2. Research Objective
The objective of this research is to measure the spatial coordinates of the descriptive points of the details of computer model's surfaces. Computer models can be imported into a 3D modeling software, such as AutoCAD or 3D Studio, for further technical handling. Some of the techniques for creating 3D models can provide the real texture of the model, while others cannot. For those techniques that provide only shaded surfaces, the ‘digital projector approach’ can be applied to obtain the computer model with its real details on its surfaces (Hanke and Ebrahim, 1999). Once the computer model is ready with its real shape, a camera could be assigned with known interior and exterior orientations to take still images for the computer model from any location. The assigned camera parameters (the interior and exterior orientations) will be saved in a database with the information of the points used in creating the model. The database file could be in a DXF format. DXF files are standard ASCII text files, which can easily be submitted to other programs for specialized analysis. A full detail about DXF files format can be found in (Huang and Trinder, 1999). Using the saved information and the taken image, the spatial coordinates of any details of the computer model surfaces can be computed. Figure 1 presents the schematic chart of the system. Ebrahim and Elsonbaty, 2008 have derived a method to determine the spatial coordinates of such points, but depends on the assumption that the computer model is consists of planar faces.

![Figure 1: Schematic chart of the system](image-url)
photogrammetric techniques after determining the surfaces where the details are laying on. A brief description of the used method to solve the problem is given hereunder.

1. Determining the visible parts of the surfaces in the image plane: To determine the visible parts, there are four basic steps as follows:
 - Derive the transformation formulas to calculate image coordinates from spatial coordinates and vice versa using the photogrammetric techniques.
 - For one surface, find the points that lying on its visible side from the given database. Next, construct a closed polygon surrounding these points as a convex hull. This procedure will be done for each surface Φ_i. So, in the image plane, m polygons can be obtained depending on the number of surfaces appearing in the image.
 - Find the intersection points between these polygons, if any. Divide each polygon into parts through these intersection points. Hence, divide the boundary of each surface in the image plane into a set of open polygons with the intersection points as start points and also end points in the list of points of each polygon.
 - Determine the visible parts of each surface, taking into consideration all surfaces together, by applying the theories of visibility. The visible parts of a surface may be represented by one or more pieces.

2. Determining the corresponding surface by determining the visible piece of the area in which the point is located. The spatial coordinates of this point can now be calculated from the equation of that surface.

To carry out the above procedure, the spatial object has to be represented in a way that gives a complete and unambiguous definition of the object including not only the shape of the boundaries, but also the object's interior and exterior regions. In the following section, a brief explanation about the way in which objects will be represented on the computer will be given.

4. Representation of Object
The object in space can be defined as set of surfaces Φ_i (i=1, 2, ..., n). The points in each surface can be stored in one list of points. Each surface is enclosed
by a closed polygon because only parts of each surface may be visible in the image plane. Hence, a system that is able to represent every element in the object must be defined. Such elements, which containing the needed sufficient information for solving the problem are points, polygons, and surfaces.

4.1. Data Structure for Points
The data structure of a point has point record number (id), its spatial coordinates (P), its image coordinates (P'), and the address of the next point (next) as shown in Figure 3 (Elsonbaty and Stachel, 1997).

4.2. Data Structure for Polygons
A polygon is defined by a sequence of the included vertices (loop). Therefore, the data structure of a polygon includes the polygon record number (id), record number of the surface on which it lies on (id-S), the pointer to its vertices (Point-L), and the pointer to the next polygon (next), as shown in Figure 4.

4.3. Data Structure for Surfaces
The object surfaces are defined by a certain number of polygons. Each polygon is defined by a sequence of included vertices (loop). The outer loop of a certain face is processed mathematically as positive (anticlockwise), while the inner side is treated as negative (clockwise). For each surface, the following information needs to be stored as shown in Figure 5.

- The surface record number (id),
- A character indicating the type of the surface (cylinder, cone, etc.) (Ty),
- The pointer to the list of all points that located on it (S_P_L),
- The pointer to all points laying on its boundary in the image plane (S_PL_O),
- The pointer to the list of all visible polygons of the surface considered alone in the photo (S_Poly1),
- The visible pieces of the surface with other surfaces superimposed (S_Poly2), and
- The pointer to the next surface (next).
5. Determination of the Visible Parts of a Surface

To determine the visible parts of a surface, the following steps will be performed: Step 1: From the 3D computer model's database, the points will be divided into \(n \) groups, one group for each surface. This division will be done as follows: The equation of each surface will be determined by selecting manually a set of points located on it. Then, all points in the database will be tested to determine the points that fulfilled the obtained equation of the surface within allowable errors. As only second-degree surfaces are interested, the general equation can take the following form (Elsonbaty, 2008(a) and Farin, 1990):

\[
\begin{align*}
 a_{11}x^2 + a_{21}xy + a_{31}y^2 + a_{22}x^2 + a_{32}yx + a_{42}y^2 + a_{13}xz + a_{23}xy + a_{33}z^2 + a_{24}yz + a_{34}zy + a_{44}z^2 + a_{15}x + a_{25}y + a_{35}z + a_{45}w + a_{55}w^2 &= 0
\end{align*}
\]

Equation 1

where \(a_{11}, a_{22}, a_{33}, a_{12}, a_{23}, a_{13}, a_{34}, a_{24}, a_{34} \) and \(a_{44} \) are constant coefficients, and at least one of the first six are non-vanishing. If \(m \) points located on that surface are chosen and substitute their coordinates in equation 1, \(m \) equations in nine unknown coefficients can be obtained. The \(m \) equations can be written in matrix form as:

\[
\begin{bmatrix}
 A \\
 \end{bmatrix}
\begin{bmatrix}
 X \\
 \end{bmatrix}
= \begin{bmatrix}
 B \\
 \end{bmatrix}
\]

Equation 2

where \(X \) is the vector of the unknown coefficients, \(m \) is the number of unknowns (coefficients), \(m \) is the number of points (must be greater than nine), \(A \) is the matrix of the constant coefficients, and \(B \) is the vector of the constant term. Equation 2 can be solved using the least squares technique to determine the coefficients in equation 1. The points located in the database, which satisfy the surface equation, can now be extracted and stored in the \(S_{PL} \) list of that surface. Figure 6 shows the points located on one surface. Step 2: The polygon representing the boundary of the surface will be determined using the following procedure:

- At first, the visible points on a surface that appear in the image will be determined by assuming that this surface is the only one appearing in the image plane. So, the polar plane of the surface with respect to the known center of projection will be determined (camera station) \(S(x_0 : y_0 : z_0) \). The equation of the polar plane has the form:

\[
\begin{align*}
 a_{11}x_0 + a_{21}y_0 + a_{31}z_0 + a_{12}x + a_{22}y + a_{32}z + a_{23}x_0 + a_{33}y_0 + a_{24}x + a_{34}y + a_{25}z + a_{35}w + a_{45}w^2 &= 0
\end{align*}
\]

Equation 3

Because the camera station is outside the object, the points in \(S_{PL} \), which are located between the camera station and the polar plane, are visible. This determination could be achieved by substituting the coordinates of any point \(P \) in \(S_{PL} \) into the equation 3. If the sign of the result is equal to that of the coordinates of camera station or zero, then the point is visible. These points will be stored in \(S_{PL} \). Figure 7 shows the visible points located between the polar plane and camera station.
points that are on the surface in the image plane and stored in the S_{PL_O} list (Elsonbaty, 2008(b)). The other points from S_{PL_O} list will be then deleted. Figure 8 shows the points located on the boundary of the surface.

- Now, the rest of the points in this list formed a closed polygon surrounding the surface in the image.

After repeating the above procedure for all the model’s surfaces, several closed polygons in the image plane can be obtained; two of them may look like those in Figure 9.

- Omitting of the hidden parts on each polygon: until this step, each surface is considered as appearing alone in the image plane. In this step, the images of all surfaces will be superimposed in one image. Consequently, parts of the identified polygons in the previous step may be covered by another surface, as shown in Figure 9. To determine the hidden parts, the points of intersection T_i of two polygons must be found. To find these points, each polygon will be divided into a certain number of branches of open polygons, which are stored in S_{Poly1}. The corresponding points of T_i are the images of both two points that each one is located on one of the surfaces. Starting with the points T_i, which has the minimum y-coordinate in the image plane. The polygon to which T_i belongs will be determined.

From this polygon, only the branch containing T_i and close to the nearest points of intersection will be considered. Three other branches started at any of the endpoints T_i. One of them belongs to the same surface, while the other two belong to the
other surface. Then, the outer polygon must be visible. The corresponding points r_{1}^{v} (r_{1}^{v1}, r_{1}^{v2}) on the two surfaces will be calculated in space. Figure 10 shows the visible parts on each polygon. The surface that contains the nearest point to the camera station S is visible and the branch belongs to this surface is visible too. The other hidden ones will be then deleted from the list S_{Poly1}. Note: In some cases, the coordinates of r_{1}^{v1} and r_{1}^{v2} are the same. This event happened when the point r_{1}^{v} is the image of a real point of intersection of the two surfaces, then the branch that is located inside the projection of their curve of intersection is visible, while the other is hidden.

When this procedure is done for each pair of polygons, there will be only three existing visible branches at each point of intersection r_{1}^{v}.

- Determining the visible parts of each surface: each surface now has a list of branches stored in S_{Poly1}, which represents the boundary of the visible parts of the surface. These branches are in general open polygons. The projection of the visible parts of the surface is determined as regions surrounded by closed polygons. This projection could be accomplished by doing the following steps:

1. The biging will be with any branch (PL) which located on the boundary of the object. This list is stored in S_{Poly2} list.
2. Determine the surface (ϕ_{1}) to which this branch belongs.
3. Find all branches connected to surface (ϕ_{1}) at one of the endpoints r_{1}^{v} in the PL list. There are two lists of branches, PL_{1} and PL_{2}. Find their corresponding surfaces.
4. If one of the branches PL_{1} or PL_{2} belongs to the same surface (ϕ_{1}), then this branch will be added to the S_{Poly2}-list of each surface or both branches will be belong to the other surface (ϕ_{2}). The branch located on the boundary of the object must be then excluded and the other branch will be added to the S_{Poly2}-list of each surface as shown in Figure 11.

![Figure 11: Determining visible parts of the surfaces](image)

Step 3: The visible areas of each surface (ϕ_{1}) in the image are now represented by a set of closed regions surrounded by polygons stored in the list S_{Poly2}. To determine which surface contains the point P, it is necessary to test whether its image P' is lying inside a certain region surrounded by the polygon PL_{Poly2}. This determination is described in detail in (Ebrahim and Elsobaty, 2008). Once the region to which P' belongs is determined, the surface of P and its equation will be also known. Using the image coordinates of P' and the equation of the surface, the coordinates of P can be easily calculated.

6. Accuracy Analysis
The accuracy is an important element in the world of measurements. Therefore, it has been defined in several textbooks and articles. Accuracy defined as the degree of conformity or closeness of a measurement to the true value. The accuracy includes not only the effects of random errors but also any bias due to uncorrected systematic errors.
If there is no bias, the standard deviation can be used as a measure of accuracy. Buckner, 1983 defined also the accuracy as the degree of conformity with a standard ("the truth"). He mentioned that the accuracy relates to the quality of a result, and is distinguished from precision, which relates to the quality of the operation by which the result is obtained. Kenneth and Donald, 1995 defined the accuracy as the degree to which information on a map or in a digital database matches true or accepted values. Accuracy is an issue pertaining to the quality of data and number of errors contained in a dataset or map. Buckner, 2000 wrote that the accuracy has only one meaning: conformity with the truth. One or more of the following define the truth in measurement science:

* An adopted physical or other standard (distance, weight, volume, time, etc.).
* Geometric laws.
* A system decided as correct by some recognized authority.

In theory of errors of measurements, the term accuracy is traditionally used for a concept that measures the closeness of derived estimated or predicated data to reality (Ebrahim, 1992). The accuracy can be evaluated by using one of the following two methods (Hottier, 1976):

1. Check measurements.
2. The accuracy predictor.

In the first method, the photogrammetric results are compared with the results obtained from a more accurate measuring procedure. The accuracy predictor is a theoretical way to evaluate a system using its main parameters. Fraser, 1990 agree with Hottier, 1976 for the first method and stated, "If check points are available in the object space, the root-mean square (RMS) errors of photogrammetrically determined target point coordinates can be used as an accuracy measure". Photogrammetrist very often estimate the accuracy of a method by controlled experiments, where the photogrammetrically determined co-ordinates are compared with so called given co-ordinates that have an accuracy that considerably higher than that of the method to be checked (Ebrahim, 1992). The overall expected accuracy from applying the new algorithm is not depending on the algorithm itself, but depending on several factors, which can be summarized in:

* Density of the points that used in creating the computer model especially for the irregular surfaces.
* Computer model accuracy, i.e. the accuracy of mapping, draping, or projecting the texture on the computer model.
* Accuracy of marking the desired details points on the taken image by the assigned camera.

The errors in the obtained special coordinates from the new algorithm will be a matter of error propagation from the abovementioned error sources. The accuracy will differ from model to model because not all models have the same nature and/or the same method of creation. The effect of the assigned camera parameters will be only due to the error in marking the desired details points on the taken image because these parameters are errorless. To minimize the errors in the obtained special coordinates, i.e. maximize the accuracy, the abovementioned factors must be high. The accuracy of obtained special coordinates due to applying the new algorithm will not give an indication of enduring accuracy of the new algorithm, but will be subjected only to the appointed computer model.

7. Examples of Computer Models

In the following subsections, examples of some computer models of real objects will be presented. These examples are suitable for the new algorithm to be applied on. In addition, some photos of the objects' models will be shown, e.g. the objects' wireframe, shaded model, and the computer model image taken by an assigned camera in 3D studio with object real shape after applying the digital projector approach (Ebrahim, 1998). The spatial coordinates of the points that have been used to create the model along with the assigned camera parameters within 3D Studio will be used as source data to measure the spatial coordinates of the other model surfaces details' using this new algorithm. Considering an object restitution, first a complete reconstruction of the object's shape has to be done using e.g. any digitally matching method (e.g. Streilein, 1995) or a bundle adjustment program (Kager, 1980) followed by a definition of lines and surfaces. A few of the already before used images are then chosen to do a "Digital Slide Projection" onto the surface to achieve a restitution of the object details on its surfaces (Ebrahim, 1998). The surfaces of the objects are not restricted to planes, but are also of regular curved (e.g. cylinder etc.) and even irregular or free formed shape (Hanke and Ebrahim, 1996).
7.1 Otto Wagner’s Train Station (Vienna, Austria)
Otto Wagner’s Train Station buildings on the Karlsplatz in Vienna have been selected in 1990 as a small test object, photographed, measured, and documented, in order to get well-checked materials to train students and photogrammetrists as well as to validate internationally the results of the analytic photogrammetric amount of control information. The test object was a masterpiece of Art Nouveau, built in 1898-1899 (Waldhäuser, 1991). Figures 12 and 13 show the wireframe and the shaded computer model of the object while figure 14 shows the computer model image taken by an assigned camera in 3D.

Figure 12: Computer model Wireframe
(Hidden and Visible surfaces)

Figure 13: Shaded Computer Model
(Visible Surfaces Only)

Figure 14: An image for the Computer Model
with real shape

Figure 15: Computer model Wireframe
(Hidden and Visible surfaces)

Figure 16: Shaded Computer model
(Visible Surfaces Only)

Figure 17: An image for the computer model
with real shape
7.2 Caracalla Thermal Spring (Rome, Italy)

It is a part of ancient “Caracalla Thermal Spring” in Rome, Italy. This photogrammetric project was originally part of an archaeological investigation of the interesting monument by the Austrian Academy of Science, which has been done in 1988. The rough and weather-beaten surface itself is very different to that of the Karlsplatz object and looks more like a DTM. The nature of the object is very difficult because its surface is irregular and big part of it is an irregular cylinder. Figures 15 and 16 show the object wireframe and shaded computer model while figure 17 shows the computer model with its real shape.

7.3 Statue Head (Luxor, Egypt)

It is one of the old Egyptian statues' head made from marble for one of the old Egyptian Kings, which located in front of the main entrance of the Luxor temple in Luxor city. It is one of the most difficult objects because of the natural of the object’s surfaces. It has irregular surfaces, which need large amount of points to be marked to define the face of the statue’s head. Figures 18 and 19 show the object wireframe and shaded computer model while figure 20 shows the computer model with its real shape.

Figure 18: Computer model wireframe
(Hidden and Visible surfaces)

Figure 19: Shaded computer model
(Visible Surfaces Only)

Figure 20: An image for the computer model
with real shape

8. Conclusion and Future Recommendation

Creating 3D computer models with their real shapes and dimensions is the best way to document historical buildings and the world’s heritage. In these models, the details that appear on the object’s surfaces sometimes need to be measured.
Several still images for the computer model can be taken from any desired point of view that shows the interesting details to be measured as far as a camera within 3D Studio can be freely assigned. Only the spatial coordinates of the points used to create the model are available in the database of the model. However, other details on the model's surfaces cannot be directly determined. The main aim of this paper is to introduce a new algorithm for determining the spatial coordinates of these points. The surfaces of the object are considered surfaces of the second order because this type of surface is extensively used in the objects. In the image plane, parts of some surfaces are invisible because they are located behind each other. The visible parts are divided into plane regions. The main idea of the new algorithm is to determine the surface to which each region was referenced. To achieve this goal, the basic concepts of the central projection, the computer graphics and the techniques of digital close-range photogrammetry with known camera orientations are used. This promising new measuring algorithm will enable photogrammetrists to do their job easily and with accuracy related to the accuracy of the appointed computer model. The advantage of this algorithm is the ability to measure any details laying on the surfaces of computer models. In near future, the authors will start working in programming this new algorithm to test and check it against different natures of computer models taking the mentioned factors affecting the accuracy into consideration during choosing the test models. The procedure will take some time and can be considered as master degree research point. Any other interested to try is welcomed under approval of the authors.

Appendix I
Relation between Image and Spatial Coordinates

Let us assume that the coordinates of a point \(P(p_x, p_y, z_p) \) in space are known relative to the \(xz \) coordinate-system with the position vector \(p \). The image coordinates of point \(P^c(x, y) \) (image of \(P \)) need to be calculated. Let \(S \) be the center of projection with position vectors \(p \), and \(O \) be the principal point in image plane with position vector \(o \).

![Figure 1-1: Relation between image and spatial coordinates.](image)

The image coordinates of \(P^c \) can be calculated from (Elshabrawy and Elsonbaty, 2008) as follows:

\[
x = \lambda (p - o) \cdot e_1
\]

\[
y = \lambda (p - o) \cdot e_2
\]

Equation 1-1

where \(\lambda \) is a parameter determined from the following equation:

\[
\lambda = \frac{f}{(p - o) \cdot d + f}
\]

Equation 1-2

where \(d \) is the unit vector parallel to \(o \) (i.e., the normal on the image plane), \(f \) is the focal length, and \(e_1 \) and \(e_2 \) are unit vectors along the \(x \) and \(y \) axes in the image plane. To find the relation between the image coordinates of point \(P^c(x, y) \) and the spatial coordinate of \(P(p_x, p_y, z_p) \), the above equation can be rewritten in the following form using homogeneous coordinates:

\[
x = \frac{x_1}{x_0} \quad \text{and} \quad y = \frac{x_2}{x_0} \quad \text{with} \quad x_0 = \frac{1}{\lambda} = 1 - \frac{(p - o) \cdot d}{f}
\]

Hence, \(x_1 = (p - o) \cdot e_1 \) and \(x_2 = (p - o) \cdot e_2 \). Then, the relation between the image coordinates of point \(P^c(x_1, x_2) \) and the space coordinate of \(P(p_x, p_y, z_p) \) can be presented in a following matrix form:
\[
\begin{bmatrix}
 x_0 \\
 x_1 \\
 x_2 \\
 x_p \\
 y_p
\end{bmatrix} =
\begin{bmatrix}
 a \cdot d_1 & d_2 & d_3 & 1 \\
 f & f & f & 0 \\
 -e_1 \cdot e_1 & e_1 \cdot e_2 & e_1 \cdot e_3 & 0 \\
 -e_2 \cdot e_1 & e_2 \cdot e_2 & e_2 \cdot e_3 & 0
\end{bmatrix}
\begin{bmatrix}
 x_p \\
 y_p
\end{bmatrix}
\]

Equation 1.3

where \(d_1, d_2, d_3, e_1, e_2, e_3 \) and \(e_1, e_2, e_3 \) are components of the vectors \(d, e_1, e_2 \) respectively.

References

