A Review of the Effectiveness of Spatial Information used in Urban Land Cover Classification of VHR Imagery

Salehi, B.¹, Zhang, Y.², Zhao, M.³ and Dey, V.⁴
University of New Brunswick, 15 Dinneen Drive, Fredericton, New Brunswick, Canada, E3B 5A3
E-mail: bsalehi@unb.ca, yunzhang@unb.ca, mli@unb.ca, vdey34@gmail.com

Abstract
Land cover classification of very high resolution (VHR) imagery in urban areas is an extremely challenging task, because of the low intra-class (within-class) and high inter-class (between-classes) spectral similarities of impenetrable land cover types (such as buildings and traffic areas). Over the past decade, a significant amount of research has been conducted on the incorporation of spatial information along with spectral information of VHR imagery into urban land cover classification. The spatial information includes textural, morphological and contextual measures extracted from VHR imagery, as well as LiDAR- and photogrammetrically-derived DSM and existing GIS data layers. In this paper, a comprehensive review of recent literature was conducted to evaluate the effectiveness of such measures in land cover classification of urban areas using VHR imagery. For each measure, a comprehensive list of papers for both pixel-based and object-based classification is provided. In addition, the classification results of representative publications are reported and its advantages and limitations in both pixel-based and object-based approaches are discussed. It has been found that, in general, object-based classification performs better than pixel-based approaches, since it offers a more comprehensive evaluation of spatial features by segmenting the image. Moreover, utilizing spatial measures significantly improves the classification performance for impenetrable land cover types, while may have no effect or even lower the classification accuracy for classes of vegetation and water surfaces. Textural measures are more commonly utilized in pixel-based approaches, while morphological measures have better performance in object-based classification. The effect of contextual measures are used in conjunction with two other measures, particularly in object-based approaches. Although ancillary data shows a very high potential to address the problem of spectral-based classifiers in separating spectrally similar impenetrable land cover types, incorporating such data, particularly photogrammetrically-derived DSM, in classification is still in a very early stage and requires significant exploration and development.

1. Introduction
Land cover classification is one of the most important topics in remote sensing both for researchers and practitioners, because of its broad applications in almost all geo-related domains. Remotely sensed images are the major, and sometimes the only, input in land cover classification. The spatial resolution of the image is one of the most important factors that affect land cover classification performance (Chen et al., 2004). Previous research has explored the impact of spatial resolution on classification of remotely sensed data (e.g., Price, 1997 and Quattrochi and Goodchild, 1997). Because of the sub-meter ground resolution, VHR images unveil a very high potential for more detailed and accurate mapping of the urban environment (Pacifici et al., 2009). New VHR digital aerial images provide an excellent data source for the mapping and classification of urban areas, but their images are expensive and not easy to collect in a short period of time. With the advent of very high spatial resolution (51m) satellite sensors since 1999, such as IKONOS, QuickBird, OrbView, WorldView-1, GeoEye-1 and WorldView-2, urban land cover classification has rapidly gained interest within the remote sensing community. However, the increased spatial resolution of VHR imagery does not automatically yield improved accuracy of urban land cover classification, if classifiers just employ the spectral information of the image (spectral-based classifiers). This is mainly due to the high spectral variation within the same land cover (intra-class spectral variation; e.g., buildings with different roof types) and the spectral confusion between different land covers (inter-class spectral confusion) (Lu et al., 2010, Xu and Li, 2010 and Huang et al., 2011). To compensate for the limitations of spectral-based classifiers, many researchers have attempted to develop techniques to incorporate spatial
information extracted from VHR imagery and/or from ancillary data into classification. For the sake of convenience, we categorize the spatial information into four types: textural, contextual and morphological measures (extracted from the VHR image), and ancillary data such as digital elevation/surface models (DEM/DSM) derived from LiDAR or stereo photographs and existing GIS data layers (e.g. road network and buildings' footprint). This paper aims to review the most recent research on urban land cover classification using VHR satellite imagery. Specifically, the objective is to evaluate the effectiveness of incorporating the four aforementioned types of spatial measures in both pixel-based and object-based classification approaches. Comprehensive lists of major publications (including peer-reviewed journal papers) in which these four types of spatial measures have been utilized in both pixel-based and object-based classification approaches are reported. In addition, the effect of each type of measure on increasing the classification accuracy is quantitatively evaluated by reporting the accuracies achieved in some recent literature. To date, we have not found a comprehensive review of different spatial and spectral measures used in classification of VHR imagery, particularly over urban areas. Liu and Weng (2007) conducted a survey of image classification methods and techniques for improving classification performance. Their survey includes a brief description of general process of image classifications, with the citation of a large amount of previously published literature. However, it did not focus on the classification of VHR imagery in urban environment. Liu et al. (2005) briefly reviewed classification patterns of remotely sensed imagery based on object-oriented approaches. Their study, however, is limited to describing basic steps of object-oriented image analysis along with reviewing a few selected publications. Gamba et al., (2005) presented a bibliographic review of the state-of-the-art of urban remote sensing using multiple data sets. They briefly reviewed the data fusion issues in urban areas without taking into consideration the capabilities of VHR imagery in urban analysis.

2. Spatial Information Used in Classification
The aforementioned spatial measures are utilized in either pixel-based or object-based classification to help the classifier distinguish different land cover classes. Since the nature of such measures and their effects on classification are different in pixel-based and object-based image analysis, it is useful to give a brief review of these two generic types of classification before proceeding to the review of the measures.

2.1 Pixel-Based vs. Object-Based Classification
In general, image classification approaches can be grouped into different categories such as supervised or unsupervised, parametric or non-parametric, hard or soft (fuzzy) (Lu and Wang, 2007). In each category the basic processing unit could be pixel or object; accordingly approaches are described as pixel-based (or per-pixel) and object-based. Although pixel-based approaches are still widely used for mapping particular urban impervious land cover types such as large commercial parcels, the distribution and shape of such cover types in heterogeneous areas may be more accurately mapped by object-based classification approaches (Hester et al., 2008). A serious problem associated with pixel-based classifiers is the so-called "salt and pepper" effect or "structural clutter" (Van de Voorde et al., 2007), which produces a noisy classification result due to the spectral heterogeneity of classes in an urban environment and the lack of topological information used to classify pixels (Sims and Mesev, 2007). This effect is more significant in the VHR image classification especially over complex urban environments, because of the high intra-class spectral heterogeneity of some surface types. To reduce this negative effect of pixel-based classification approaches, some studies have proposed post-classification techniques (e.g. Van de Voorde et al., 2007, Hester et al., 2008). These techniques, however, may remove small land cover types such as single-family houses and single trees. The object-based classification approach, on the other hand, decreases variance within the same land cover type by averaging the pixels within the object, which prevents the "salt and pepper" effect of pixel-based classification approaches (Chen et al., 2009a). Starting from around the year 2000, studies of object-based images analysis have sharply increased (Blaschke, 2010). A comprehensive list of recent literature concerning object-based urban land cover classification of VHR imagery is provided in tables 1, 4, 6, and 8. Other sources of object-based image analysis research include three online archives of conference proceedings (Object-based Image Analysis (OEBIA, 2006), Geographic Object-based Image Analysis (GEOBIA, 2003 and GEOBIA, 2010)), a book published on object-based image analysis by Blaschke et al., (2008) and a literature review paper by Blaschke, (2010). It is noteworthy that much of the work referring object-based image analysis originated around the "eCognition" software (Benz et al., 2004). The next section reviews the spatial measures utilized in classification of land covers in a typical urban environment.
The measures incorporated into both pixel-based and object-based classification are discussed and the advantages and limitations of each type of measure are evaluated.

2.2 Spectral-Based Classifiers

Spectral-based classifiers have promising performance when applied to the medium and high spatial resolution images with several spectral bands for mapping relatively large homogenous areas such as vegetation, forest, water and soil (Lu and Wang, 2007, McMahon, 2007 and Xu and Li, 2010). However, because of similarities in the spectral response of land cover types in an urban scene, along with the low spectral resolution of VHR imagery (the limited number of spectral bands and the wide wavelength range covered by them), the classification of such imagery is a challenging task (Zhang and Coulange, 2006). Despite the finite spatial resolution of VHR imagery, its spectral resolution is limited to four multispectral bands (except the newly launched WorldView-2, which has eight multispectral bands) and a panchromatic band. Moreover, most of the bands that are suitable for separating urban land cover types lie outside or near the boundaries of the wavelength range of the multispectral bands of VHR imagery (Herold et al., 2003b) (e.g. at wavelength around 580 nm which lies in the boundaries of the Green band or at wavelengths around 740 nm which lies outside of Red and NIR bands of VHR images). Ben-Dor (2001), Herold et al. (2004) and Warner and Nerry (2009) concluded that the shortwave and thermal infrared spectral regions are important for urban applications. These bands, however, are not present in the VHR imagery. Thomas et al. (2003) stated that the lack of mid-infrared bands in VHR images hinders the ability of traditional spectral-based classifiers to accurately distinguish detailed land cover types. Herold et al. (2003b) also concluded that some land cover classes such as asphalt road, tar roof and parking lot have a very similar and constant low reflectance over the whole spectral range such that even AVIRIS hyperspectral sensor has limitation in mapping these classes.

2.3 Spatial Measures Extracted From the Image

Spectral-based classifiers detect land cover classes exclusively according to spectral information while the large amount of valuable image spatial information is neglected. Moreover, in an urban landscape, impervious classes are spectrally too similar to be distinguished using only spectral information of the image. Hence, for the mapping of such classes, it is necessary to incorporate spatial information together with spectral information in the classification process. Two distinct types of methods which utilize spatial information from an image are region-based and window-based methods (Gong et al., 1992). The region-based method is usually used in object-based, whereas the window-based method is used in pixel-based approaches. In the following sub-sections, the performance of each type of spatial measures, i.e. textural, contextual and morphological measures of the image and spatial measures of ancillary data in both pixel-based and object-based approaches is reviewed. According to the results achieved in individual publications, the strengths and limitations of each group are discussed. The increase of classification accuracy resulting from the incorporation of spatial information into classification over conventional spectral band-based classifiers is reported. The classification accuracies reported through this review paper are all based on Error or Confusion matrices (Congalton, 1991 and Richards and Jia, 2006) unless otherwise specified. For most literature, mentioned in tables, the Overall Accuracy (OA) and/or Kappa coefficient (KA) are used. In some cases, where available, the Producers’ Accuracy (PA) of the classification of land covers such as buildings and roads is reported as well.

2.3.1 Textural Measures

Many researchers have attempted to employ texture measures as additional spatial information in the urban land cover classification of VHR images to overcome the lack of spectral information (Carleer and Wolff, 2006 and Myint, 2007) in both pixel-based and object-based classification approaches (Table 1).

<table>
<thead>
<tr>
<th>Table 1: List of papers which have utilized textural measures in pixel-based or object-based urban land cover classification of VHR imagery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel-based classification</td>
</tr>
<tr>
<td>Zhang (1999); Pesaresi (2000); Mallard (2003); Shackelford and Davis (2003a); Shackelford and Davis (2003b); Chen et al. (2004); Myint et al. (2004); Wolter (2004); Moos and Malpigh (2005); Myint and Lam (2005); Feeser et al. (2005); Zhang and Coulange (2006); Alonso et al. (2007); Myint (2007); Agbaya et al. (2008); Akcay et al. (2009); Paciotti et al. (2009); Luo and Mountrakis (2010); Lu et al. (2010); Ouma et al. (2010); Tassetti et al. (2010).</td>
</tr>
</tbody>
</table>

International Journal of Geoinformatics, Vol. 8, No. 2, June 2012 37
The result of our literature review indicates that texture features extracted from gray level statistics, especially those of co-occurrence gray level matrix (GLCM), are the most useful texture measures used in the classification of VHR images over urban areas, particularly when pixel-based approaches are utilized. Several recent publications have benefited from the GLCM for the purpose of mapping urban areas using VHR imagery. For instance, Maillard (2003) concluded that GLCM gives superior results over the semivariogram and the Fourier-based texture extraction for the scenes where objects are distinguishable visually by their textures' characteristics. Buildings and traffic classes are well-textured classes in VHR images and they can be easily distinguished by visual interpretation. Consequently, the GLCM works better than the two others in this case. Among the 14 GLCM texture measures, originally proposed by Haralick (1979), seven of them are strongly correlated with each other (Cosu, 1988). Thus, the choice of optimal texture measure is an important issue in GLCM texture extraction (Jensen, 2005). Maillard (2003) reported that the most commonly used GLCM texture features in literature are, in decreasing order of popularity, the angular second moment (ASM), entropy (ENT), the inertia (initially contrast (CON)), the correlation (COR) and the inverse difference moment (IDM). Pacifici et al., (2009) believe that energy (ER) which is the square root of ASM, CON, variance (VAR), COR, ENT and IDM are the most relevant measures used in literature. Based on the prototype performance approach and its application in urban areas (Pratt, 2007), Puissant et al., (2005) and Su et al., (2008) concluded that four GLCM texture features used in mapping urban areas are homogeneity (HOM), ENT, dissimilarity (DSS) and the ASM. We conducted a broad search on the major publications (mostly peer reviewed journals) in the area of urban land cover classification using VHR imagery to find which GLCM measures have mostly been utilized. The results are summarized in Table 2. Based on the number of papers listed in Table 2 for each measure, a graph was plotted and is shown in Figure 1. ENT and ASM (or ENM) are the most frequently used measures. Nineteen and sixteen papers have utilized ENT and ASM respectively. HOM and CON ranked third (figure 1). These two measures have been utilized in thirteen papers. Having determined the appropriate GLCM measure(s), four important factors including window size and shape, quantization level, inter-pixel distance and direction of spatial relationship, must be defined for each measure (Su et al., 2008), since they influence the effectiveness of extracted measures in the classification process. The success of classification using texture features depends largely on the selected window size (Su et al., 2008). The window size and shape are automatically identified in object-based texture extraction inasmuch as the measure is calculated for each individual object resulting from the segmentation stage. In pixel-based approaches, however, the optimum of window size and three other factors must be determined. Window size is related to image resolution and content. Puissant et al., (2005) believe that it would be interesting to choose different window sizes according to the size of features to be extracted. For the choice of direction, the literature proposes calculation of texture measures in four directions (0, 45, 90 and 135 degrees) and then taking the average of them (Haralick, 1979 and Ariza et al., 1994). Several researchers suggest that it is a good idea to reduce the quantization level (e.g. from 8 bits to 5 bits) of the input data so that the GLCM to be computed for each pixel does not become too large (Jensen, 2005). Table 3 shows different texture measures with their corresponding texture factors used in some recent papers. Because of space limitations, we listed the results four journal papers in which different VHR imagery, different urban land cover types, and different classification methods are utilized.

Figure 1: The most used GLCM texture measures for urban land cover classification of VHR imagery.
Table 2: List of papers which have utilized different GLCM textural measures in urban land cover classification of VHR imagery

<table>
<thead>
<tr>
<th>GLCM</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOM</td>
<td>Zhang (1999); Herold et al. (2003a); Punsamt et al. (2005); Carleer and Wolf (2006); Agliera et al. (2008); Su et al. (2008); Pacifici et al. (2009); Lu et al. (2010); Luo and Moumou (2010); Ouma et al. (2010); Tusseti et al. (2010); Pu et al. (2011); Salehi et al. (2011a).</td>
</tr>
<tr>
<td>ASM</td>
<td>Zhang (1999); Pesaresi (2000); Herold et al. (2003a); Maillard (2003); Myint et al. (2004); Puissant et al. (2005); Carleer and Wolf (2006); Myint (2007); Agliera et al. (2008); Su et al. (2008); Pacifici et al. (2009); Luo and Moumou (2010); Ouma et al. (2010); Pu et al. (2011); Salehi et al. (2011a).</td>
</tr>
<tr>
<td>ENT</td>
<td>Zhang (1999); Pesaresi (2000); Herold et al. (2003a); Maillard (2003); Shackleford and Davis (2003a); Shackleford and Davis (2003b); Myint et al. (2004); Puissant et al. (2005); Carleer and Wolf (2006); Almeida et al. (2007); Myint (2007); Agliera et al. (2008); Su et al. (2009); Pan et al. (2009); Pacifici et al. (2009); Ouma et al. (2010); Tusseti et al. (2010); Pu et al. (2011); Salehi et al. (2011a).</td>
</tr>
<tr>
<td>CON</td>
<td>Zhang (1999); Pesaresi (2000); Herold et al. (2003a); Maillard (2003); Carleer and Wolf (2006); Myint (2007); Agliera et al. (2008); Su et al. (2009); Pacifici et al. (2009); Luo and Moumou (2010); Ouma et al. (2010); Pu et al. (2011); Salehi et al. (2011a).</td>
</tr>
<tr>
<td>COR</td>
<td>Maillard (2003); Almeida et al. (2007); Myint (2007); Agliera et al. (2008); Pacifici et al. (2009); Ouma et al. (2010); Pu et al. (2011); Salehi et al. (2011a).</td>
</tr>
<tr>
<td>LDM</td>
<td>Pesaresi (2000); Maillard (2003); Myint (2007).</td>
</tr>
<tr>
<td>VAR</td>
<td>Herold et al. (2003a); Shackleford and Davis (2003b); Agliera et al. (2008); Chan et al. (2009); Ouma et al. (2010); Tusseti et al. (2010); Pu et al. (2011); Salehi et al. (2011a).</td>
</tr>
<tr>
<td>DIS</td>
<td>Herold et al. (2003a); Puissant et al. (2005); Carleer and Wolf (2006); Agliera et al. (2008); Pacifici et al. (2009); Luo and Moumou (2010); Ouma et al. (2010); Pu et al. (2011).</td>
</tr>
<tr>
<td>MIN</td>
<td>De Martino et al. (2003); Agliera et al. (2008); Chan et al. (2009); Lu et al. (2010); Ouma et al. (2010); Tusseti et al. (2010).</td>
</tr>
</tbody>
</table>

*STD: Standard Deviation; *MIN: Mean

Table 3: Examples of using textural measures (with their corresponding optimal factors) for improving the urban land cover classification of VHR imagery. The textural measures are incorporated as additional band into the classification. Accuracy improvement (Imp) is over the case where only spectral band(s) of the image is utilized in the classification process.

<table>
<thead>
<tr>
<th>Input data</th>
<th>Land cover types</th>
<th>Texture measures</th>
<th>Optimal Texture factors</th>
<th>Classification approach</th>
<th>Accuracy</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHR - Simulated Image (3 pan and 3 MS bands at 1m Spatial res.)</td>
<td>Water, shadow, tree, grass, road, built-up</td>
<td>HOM of pan band</td>
<td>W.S.: 7.67, D.: average of (0, 1, 2, 3, 4)</td>
<td>Pixel-based Discriminant Analysis</td>
<td>OA: 92.2%, Imp: 4.4%</td>
<td>Puissant et al. (2005)</td>
</tr>
<tr>
<td>VHR-4B (Pan/sharp bands)</td>
<td>Shrubs, grassland, water, road, building, vacant lots, shadow</td>
<td>ASM over objects from segmented image</td>
<td>W.S.: 7.67, D.: average of (0, 1, 2, 3, 4)</td>
<td>Object-based Maximum Likelihood</td>
<td>OA: 83.7%, Imp: 2.1%</td>
<td>Ouma et al. (2010)</td>
</tr>
<tr>
<td>VHR-4K (Pan/sharp bands)</td>
<td>Road, building, tree, water, grass, shadow, bare soil</td>
<td>CON over image</td>
<td>W.S.: 7.67, D.: average of (0, 1, 2, 3, 4)</td>
<td>Feature-based Fuzzy</td>
<td>OA: 87.3%, Imp: 3.7%</td>
<td>Ouma et al. (2008)</td>
</tr>
<tr>
<td>VHR-8K (Pan/sharp bands)</td>
<td>Vegetation, soil, asphalt, metallic roof, shadow</td>
<td>ENT and COR of Pan band</td>
<td>W.S.: 7.67, D.: average of (0, 1, 2, 3, 4)</td>
<td>Feature-based Maximum Likelihood</td>
<td>OA: 82.7%, Imp: 3.4%</td>
<td>Aloise et al. (2007)</td>
</tr>
</tbody>
</table>

First, the texture measure was calculated for four MS bands resulting four textural bands, then Principal Component Analysis (PCA) was applied to four textural bands and the 1st PC was chosen as the final texture measure.
Table 4: List of papers which have utilized contextual measures in pixel-based or object-based urban land cover classification of VHR imagery

<table>
<thead>
<tr>
<th>Pixel-based classification</th>
<th>Object-based classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunter and Townshend (1983); Binaighi et al. (2003); Malgasi and Sebastiano (2003); Shackelford and Davis (2003a); Shackelford and Davis (2003b); Chennas and Bellard (2004); Jin and Davis (2005); Bellens et al. (2008a); Miller et al. (2009);</td>
<td>Harold et al. (2005b); Shackelford and Davis (2003a); Thomas et al. (2003); Nghi and Mai (2008); Chennas et al. (2009); Hermans et al. (2011);</td>
</tr>
</tbody>
</table>

From Table 1, it can be seen that the texture measures and their optimal factors differ from each other for different input data and different land cover types. Furthermore, the improvement in OA, as the result of incorporating texture into classification, ranges from 2% to 11% for papers listed in this table.

2.3.2 Contextual measures

Whereas texture is the spatial variation within a small group of pixels, the context of a pixel (or a group of pixels) refers to its spatial relationship with the local and global configuration of neighbouring pixels (Gurney and Townshend, 1983 and Binaighi et al., 2003). In VHR imagery, adjacent pixels are related or correlated (Khedas and Bellard-Allame, 2004). The spatial correlation or dependency arises due to the fact that spatial resolution of the sensor is finer than the size of objects being classified (Shekar et al., 2002). Information from neighbouring pixels (contextual information) plays an important role in the identification and extraction of urban features from remote sensing imagery (Jin and Davis, 2005) by increasing the discrimination capabilities of spectral pixel-based measured data. Moreover, in object-based approaches, when multiscale segmentation is utilized, over-segmentation occurs in the lower levels of segmentation, resulting in too many boundaries such that real objects such as buildings and roads are split into two or more smaller objects. Hence, the spectral information of the object of interest is correlated with that of adjacent objects in the same level or with the spectral information of the super objects from the upper level. This contextual information can be incorporated into classification compensating for the spectral confusion between spectrally similar objects. To date, little research has been conducted on incorporating contextual information in classification and object extraction of VHR imagery (compared to textural and morphological information). Table 4 lists the papers which have utilized contextual measures in the pixel-based or object-based classification of VHR imagery of urban areas. Shadows of high-rise features such as buildings and trees are among the widely used contextual measures. Several studies have utilized it in the pixel-based (e.g. Jin and Davis, 2005 and Bellens et al., 2008b) or in the object-based (e.g. Shackelford and Davis, 2003a and Nghi and Mai, 2008) classification processes in order to separate buildings from roads and streets in urban areas. Structural measures such as the length and width of a connected group of spectrally similar pixels are considered as contextual measures in pixel-based image analysis methods, while they are categorized as morphological measures in object-based methods. In the former case, these measures are calculated based on the spatial relationship between neighbour pixels whereas in the latter case they are directly related to shape and size of each individual object. For example, Shackelford and Davis (2003b) used the length and width of a connected group of pixels, calculated based on spatial relationships within that group of pixels as two additional contextual bands in the classification. The length and width bands have high value for road and building classes, respectively. Nghi and Mai (2008) utilized contextual relation in object-based classification. The contextual relation of an object is the number of objects that are adjacent with the object of interest. For instance, road objects have stronger relation than building objects. Thus, the relation can be used as additional information in the object-based classification to separate roads from buildings or shadows from large water bodies. In object-based approaches, the difference between the mean brightness value of the object of interest to its neighbour objects and to super objects for different bands are other types of contextual measures (Thomas et al., 2003). Table 5 presents the results of some literature that have used contextual information as additional bands in the urban land cover classification process of VHR imagery.

2.3.3 Morphological measures

The effectiveness of the aforementioned spatial measures, particularly texture measures, is highly dependent on the choice of optimal window size in pixel-based approaches and the level of segmentation in object-based ones. The optimal window size differs for different classes in an urban scene, but defining an optimal window size or segmentation level for extracting textural and contextual measures is not an easy task. Moreover, members of same class can have different spectral reflectance values, such as black and gray building.
roofs (Miller et al., 2009). Consequently, they may have different contextual and contextual measures. On the other hand, buildings, roads and parking lots possess specific morphological characteristics such as shape (smoothness and compactness) and size (length, width, perimeter, area, etc.), especially in VHR images. A list of morphological measures can be found in the literature (e.g. Pratt, 2007 and Techniques Developer, 2007). Incorporation of these morphological features into classification compensates for the lack of spectral information of VHR images and facilitates the discrimination process of spatially similar classes. Subsequently, the classification accuracy of such classes increases. Incorporating morphological measures in the pixel-based classification is usually done by applying a morphological filter to the image. Having applied the filter to the image, the spatial form or structure of objects within the image is modified. This modified image, then, is used as additional band to the original bands of the image in classification. Dillon, erosion and skeletonization are three fundamental morphological operations (Pratt, 2007). However, opening and closing, which are composed by combination of erosion and dilation operations, are the most common morphological operators used in literature in order to modify the form and structure of the objects within the image (Shackelford and Davis, 2003). Morphological measures are more meaningful and applicable in object-based classification approaches (Helias et al., 2008) and many researchers have benefited from their use. Table 6 lists the papers in which morphological measures have been utilized in pixel-based or object-based classification of VHR imagery of urban areas. In object-based approaches the shape and size, as morphological measures of segmented regions, are directly utilized in classification. Table 7 as well as Table 5 report some examples of the use of morphological measures along with the classification approach and their corresponding accuracies in the urban land cover classification of VHR imagery.

Table 5: Examples of using spatial measures (mainly contextual measures) for improving the urban land cover classification of VHR imagery. The spatial measures are incorporated as additional band into the classification. Accuracy improvement (Imp) is over the case where only spectral band(s) of the image is utilized in the classification process.

<table>
<thead>
<tr>
<th>Input data</th>
<th>Land cover types</th>
<th>Spatial measures</th>
<th>Classification approach</th>
<th>Accuracy</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHR-RK</td>
<td>Road, building, tree, water, grass, shadow, bare soil</td>
<td>Texture: 4^2 vector RNT for grasses</td>
<td>Pixel-based hierarchical fuzzy classification</td>
<td>OA: 92.1%, Imp: 1.7%</td>
<td>Shackelford and Davis (2003b)</td>
</tr>
<tr>
<td>VHR-RK</td>
<td>Road, building, tree, water, grass, shadow, bare soil, impervious surf</td>
<td>Context: size of the objects</td>
<td>Pixel/Object-based fuzzy classification</td>
<td>OA: 90.7%, Imp: 3.5%</td>
<td>Shackelford and Davis (2003a)</td>
</tr>
<tr>
<td>VHR-QB</td>
<td>Water, grass, road, tree, red, white roof, other manmade, shadow</td>
<td>Context: Shadow Proximity Feature (SPF), Shadow Distance Feature (SDF)</td>
<td>Pixel-based Maximum likelihood classification</td>
<td>OA: 75%</td>
<td>Banos et al. (2008)</td>
</tr>
<tr>
<td>VHR-RK</td>
<td>Agricultural land, road networks, industrial plants, trees, urban components (large buildings, small houses)</td>
<td>Context: A Multi-window set (5x5, 10x10, 25x25 pixels) of images was used directly as the input of contextual information for MLP classifier</td>
<td>Pixel-based Multi Layer Perceptron (MLP) Neural Network</td>
<td>Correlation coefficient: 0.77, Imp: 0.28, Standard error: 25.1, Imp: 28.8</td>
<td>Bonfanti et al. (2003)</td>
</tr>
</tbody>
</table>

*Feature Analyst software was released by Visual Learning System (VLS) in 2001 and later on was developed as an extension for ERDAS and T&DAS Imaging (Miller et al., 2006).
*Accuracy assessments are based on regression analysis used for soft classification. Improvement is over the case when only a single window of 3x3, as opposed to multi-window set, was used with the same classification strategy.

Table 6: List of papers which have utilized morphological measures in pixel-based or object-based urban land cover classification of VHR imagery.

<table>
<thead>
<tr>
<th>Pixel-based classification</th>
<th>Object-based classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce et al. (2008), Hadfield et al. (2008a), Shackelford and Davis (2008a), Thomas et al. (2008), Platt et al. (2008), Zhang et al. (2008), Wang et al. (2008), and Yuan et al. (2008).</td>
<td>Bauer and Sicklick (2006), Hadfield et al. (2008a), Shackelford and Davis (2008a), Thomas et al. (2008), Platt et al. (2008), Zhang et al. (2008), Wang et al. (2008), and Yuan et al. (2008).</td>
</tr>
</tbody>
</table>
Table 7: Examples of using morphological measures (with their corresponding optimal factors) for improving urban land cover classification of VHR imagery. The morphological measures are incorporated as additional band into the classification. Accuracy improvement (imp) is over the case where only spectral band(s) of the image is utilized in the classification process.

<table>
<thead>
<tr>
<th>Input data</th>
<th>Land cover types</th>
<th>Morphological measures</th>
<th>Classification approach</th>
<th>Accuracy</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHR-QB
 (Full band)</td>
<td>Building and transportation area</td>
<td>Length, width, length/width, area excluding inner regions, area including inner regions, perimeter, compactness</td>
<td>Object-based Nearest Neighbour</td>
<td>Object: 95.5%, imp: 32.2%
 Building: 99.5%, imp: 62%
 Road: 89.5%, imp: 39%</td>
<td>Caudilh and Wulff (2006)</td>
</tr>
<tr>
<td>VHR-QB
 (Pan band)</td>
<td>Building, apartment blocks, road, railway, veg., areas, bare soil, soil, tower</td>
<td>Morphological operators: Opening, closing, reconstructed opening, reconstructed closing, with SE of the size of 9x9-25 pixels</td>
<td>Pixel-based SVM</td>
<td>OA: 92.6%, Imp: 4%</td>
<td>Tuta et al. (2009)</td>
</tr>
<tr>
<td>VHR-QB
 (Pan and NDVI bands)</td>
<td>Gray roof, Red roof, Road, Shadow, Rural area, Grass, Tree</td>
<td>From the 6th level of segmented image: Width/Length ratio, SHAPE index, Rectangular fit</td>
<td>Pixel-based SVM classification of segmented image</td>
<td>OA: 97.1%, Imp: 5.5%</td>
<td>Bruzzone and Carlini (2005)</td>
</tr>
<tr>
<td>VHR-K
 (Full band)</td>
<td>Water, grass, tree, buildings (dark red and white roof), road, shadow, other man-made objects</td>
<td>Geometric Activity (GA) features including Ridge features based on those model and biophysical features (nucleating)</td>
<td>Pixel-based Multi Layer Perceptron Neural Network</td>
<td>OA: 95.9%, Imp: 5.9%
 Road: 92.6%, Imp: 5.5%
 Roof: 93.0%, Imp: 17.6%</td>
<td>Chen et al. (2009)</td>
</tr>
<tr>
<td>VHR-QB
 (Full band)</td>
<td>Bare soil, green, tree, roof, road</td>
<td>Morphological operators: High dark filtered SDA and eight line shaped SDA morphological profiles (MIP) with partial reconstruction</td>
<td>Pixel-based MultiLayer Perceptron Neural Network</td>
<td>OA: 99.9%, Imp: 5.3%
 Road: 99.9%, Imp: 1.4%
 Roof: 99.9%, Imp: 17.8%</td>
<td>Bellans et al. (2009a)</td>
</tr>
<tr>
<td>VHR-QB
 (Pan and NDVI bands)</td>
<td>Building, road, tree, green, soil, shadow, other impervious surface</td>
<td>13 Huxel invariant moments
 10 Zernike invariant moments
 17 Wavelet invariant moments</td>
<td>Object-based SVM</td>
<td>OA: 97.5%, Imp: 6.8%
 Building: 84.6%, Imp: 5.1%
 Road: 89.9%, Imp: 5.8%
 Roof: 70.5%, Imp: 6.7%
 Soil: 70.2%, Imp: 5.3%</td>
<td>Xu and Li (2010)</td>
</tr>
</tbody>
</table>

*Improvement is over pixel-based MLP neural network when only spectral information (i.e. 4 MS bands + Pan and NDVI bands) is used.

**Improvement is over the same pixel-based neural network when only 1 st component of 40 principal components of the original data is used.

**Improvement is over the same object-based SVM when only spectral information (four Pan-sharp bands) is used.

2.4 Spatial Measures Extracted from Ancillary Data

Spatial information can be derived from the image itself (e.g. texture, context and morphology), which was broadly discussed in previous sections and from other data sources, the so-called ancillary data. Ancillary data layers are key components of accurate image classification (Thomas et al., 2003). Particularly, with the widespread availability of VHR imagery, digital elevation/surface model (DEM/DSM) extracted from LiDAR data or stereo images and existing GIS data layers, the importance of integrating these data for detailed mapping of urban environments becomes highly significant. Heidt et al., (2009) showed that the use of ancillary data improves the classification accuracy independently of the classification method. When ancillary data are utilized along with the image in the classification process, the misregistration between the ancillary data and the image is a problematic issue.

Precise geometric registration of corresponding data layers is often very difficult to achieve, particularly for VHR imagery. Since the basic mapping unit in object-based approaches is a group of connected pixels (i.e. object instead of pixel), the misregistration between multiresource data (i.e. VHR image, LiDAR and GIS data layers) is not as serious as for pixel-based approaches (Justice et al., 1989 and Zhou et al., 2008). In fact, object-based approaches facilitate the use of ancillary data (Kim et al., 2010) and since they require less precise registration of the image, they are highly desirable for multiresource image analysis (Kim et al., 2010). Several methods may be used to incorporate ancillary data into the classification process. The most common used is the stacked vector or the logical channel method (Jensen, 2005, Watanachaturaporn, et al., 2008 and Huang et al., 2011), which considers the ancillary data as an extra channel (band) to the original channels of the image.
in pixel-based or object-based classification. In object-based approaches, in addition to the stacked layer method, ancillary data are also used in a rule-based manner during segmentation (e.g., Bouzidi et al., 2010) and classification. Two groups of ancillary data are frequently used: DSM produced from LiDAR (LiDAR-derived DSM) or from aerial or satellite stereo images (photogrammetrically-derived DSM) and GIS data layers such as the map of parcels, the road centrelines network, etc. Table 8 lists the papers in which ancillary data have been incorporated into classification (both pixel-based and object-based) of VHR imagery of urban areas. As seen in this table, object-based approaches have utilized ancillary data significantly more than have pixel-based approaches.

2.4.1 DSM Derived from LiDAR and stereo photographs

DSM generated by LiDAR data or by stereo aerial/satellite images (photogrammetrically-derived DSM) gives information about the height of objects (e.g. buildings and trees); thus it is very helpful in separating spectrally similar objects with different heights (e.g. buildings from streets and trees from shadows). LiDAR- and photogrammetrically-derived DSM represent the height of each pixel with respect to the reference datum. Consequently, when they are intended to be incorporated into the classification process, the first stage involves removal of the underlying terrain, so called digital elevation model (DEM), from the DSM to produce the heights of objects above the local ground (e.g. building's height) (Ma, 2005). The resultant height is referred to as normalized DSM (nDSM) (Chen et al., 2009b). The nDSM could then be integrated along with the spectral bands of the image as an additional channel in both segmentation and classification processes or as additional information in rule-based segmentation and classification. The influence of DSM on classification can be controlled by adjusting channels' weights in the former method (Hofmann, 2001). There is a considerable amount of research accomplished in the integration of LiDAR DSM with the image during classification, particularly in object-based analysis of VHR images over urban areas (Table 8). Regardless of the classification approach, results show a significant improvement of classification accuracy (e.g., Sohn and Downman, 2007, Watamachamraporn et al., 2008 and Huang et al., 2011). Very few studies, however, have benefited from the incorporation of the photogrammetrically-derived DSM and VHR imagery for classification over urban areas. This is mainly due to unavailability of precise DSM of urban areas and misregistration between the DSM and VHR imagery. However, recent development of stereo satellite and aerial VHR imagery in conjunction with advancements in object-based image analysis methods has facilitated the integration of the photogrammetrically-derived DSM and VHR data. Hussain and Shab (2010) integrated photogrammetrically-derived nDSM and VHR imagery in a rule-based object-based classification method in order to separate buildings from transportation areas and the result was very satisfactory (Hussain and Shab, 2010). They further employed the nDSM to separate different buildings according to their heights (i.e. single and double story houses and apartment). Table 9 presents a summary of some recent papers in which ancillary data (mainly LiDAR nDSM) have been utilized together with spectral bands of the VHR imagery for object-based and pixel-based classification.

2.4.2 GIS data layers

Despite the growing attention toward use of LiDAR data for classification, few studies have taken advantages of existing GIS data layers for improving urban land cover classification (Table 8). Thomas et al., (2003) developed strategies including spatial modelling techniques to deal with the problem of confusion between spectrally similar classes in VHR data. Their spatial modelling was based on the integration of GIS ancillary data layers with the image bands. They used the distances from road centrelines to differentiate buildings and parking lots from roads (Zhou and Trey, 2008) employed building footprint data in a rule-based hierarchical object-oriented classification to separate buildings from non-building objects. They showed that the classification accuracy increased when building footprint data together with LiDAR DSM are incorporated into the classification process.

3. Discussion

3.1 Spectral Measures

The results of this review shows that spectral information of VHR imagery plays a major role in classifying vegetation (including grass and trees), water surfaces and even shadow areas. In particular, pixel-based approaches give superior results over object-based classification for mapping such land cover types in a typical urban environment. However, impervious land cover types (e.g. buildings, roads and parking areas) are spectrally too similar to be separated only according to their spectral information in VHR imagery. Between pixel-based and object-based classification approaches, a serious problem common to both approaches arises in the classification of spectrally similar and heterogeneous classes.
Table 9: Examples of using ancillary data (mainly LiDAR nDSM) in addition to VHR imagery for improving urban land cover classification. The ancillary measures are incorporated as additional band into the classification and/or segmentation. Accuracy Improvement (Imp) is over the case where only spectral band(s) of the image is utilized in the classification process.

<table>
<thead>
<tr>
<th>Input data</th>
<th>Ancillary data used</th>
<th>Land cover types</th>
<th>Classification approach</th>
<th>Accuracy</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHR-QB</td>
<td>LiDAR nDSM: HA=30cm, VA=15cm, SR=1m</td>
<td>Water, shadow, grass, shrub, building, road, vacant area</td>
<td>Hierarchical object-based</td>
<td>OA 88.4%, Imp: 20% Building: PA 95.5%, Imp: 9%</td>
<td>Chen et al. (2009b)</td>
</tr>
<tr>
<td>Aerial bands</td>
<td>LiDAR nDSM: HA=1m, VA=1m, GIS data: Parcel boundary, Building footprint</td>
<td>Building, pavement, coarse terrane vegetation, fine terrane vegetation, bare soil</td>
<td>Hierarchical rule-based object-oriented</td>
<td>OA 82.3% Building PA 93.4%, Imp: NM</td>
<td>Zhou and Tao (2009)</td>
</tr>
<tr>
<td>LIDAR intensity</td>
<td>LiDAR nDSM, DSM, Echo code (Multiple return)</td>
<td>Water, low veg, road structure, deciduous, coniferous, Intertidal</td>
<td>Hierarchical rule-based object-oriented</td>
<td>OA 98.1%, Structure PA 94.2%, Road PA 94.5%, Imp: NM</td>
<td>Brumm and Webster (2006)</td>
</tr>
<tr>
<td>VHR-Aerial</td>
<td>LiDAR DSM: HA=0.5m, VA=0.15m, A Max-Min band reman on from moving a window of 13x13 pixels over LiDAR DSM</td>
<td>Ground, grass, shadow, building, tree</td>
<td>Pixel-based SVM</td>
<td>OA 94.7%, Imp: 12.5% Building PA 96.4%, Imp: 28.6%</td>
<td>Ji et al. (2011)</td>
</tr>
</tbody>
</table>

*a: Horizontal Accuracy; VA: Vertical Accuracy

*Improvement is over pixel-based SVM when only spectral information (3 multispectral bands) is used.

Figure 2: The number of papers which have utilized spatial measures (TXT: texture, CXT: context, MRP: morphology, DEM, height data, and GIS: GIS data) in pixel-based and object-based classification of VHR imagery over urban areas.

3.2 Spatial Measures
3.2.1 Pixel-based vs. object-based classification

Figure 2 presents the number of papers in which spatial measures have been utilized in pixel-based or object-based classification approaches. This figure is a summary of Tables 1, 4, 6, and 8. Texture features have been utilized in pixel-based approaches significantly more than in object-based approaches. On the other hand, ancillary data, especially LiDAR DEM, have been used in object-based classification more often than in pixel-based classification.

The number of papers that have used morphological measures is almost equal in both pixel-based and object-based classification (with two papers more in object-based). Ten papers have used contextual measure in pixel-based classification and seven papers used them in object-based approaches. Compared to the other measures, GIS data have been employed in a very few papers (five object-based and one pixel-based) indicating the very early stage of
combining GIS data and VHR imagery for classification purposes.

3.2.2 Textural measures

From the accuracies reported in the literature, texture has a significant effect on improving the classification accuracy of urban areas using VHR imagery. The improvement ranges from 2% to 11% in terms of overall accuracy. Some of the major findings on the performance of texture measures are as follows:

- Texture measure, in general, has better performance in pixel-based than object-based approaches.
- Texture does not necessarily increase the classification accuracy for all classes. It is desirable to incorporate texture measures in classification using a fuzzy-based classification with different membership functions for different sets of classes.
- For urban impervious surfaces, integrating texture increases the classification accuracy, whereas for vegetation and water, texture does not have significant effect or even lowers the classification accuracy.
- In general larger window sizes of texture work better in classifying heterogeneous land cover types for VHR imagery, whereas smaller window size is preferred for lower resolution imagery.
- In object-based image analysis, when multilevel segmentation is used, texture measures of objects at higher levels of segmentation would be more appropriate for classification of heterogeneous land cover types such as impervious surfaces, while for homogenous classes, texture measures of objects at lower levels of segmentation are preferred.

3.2.3 Contextual measures

The amount of literature in which contextual information is utilized in the classification process is relatively small compared to that using texture and morphology (figure 2). Shadow is the most used contextual measure in classification, especially in pixel-based methods. The spectral and spatial relation between objects in the same or different levels of segmentation is the major source of contextual measures in object-based methods. Furthermore, contextual measures are rarely used as the only spatial measure in classification. In other words, contextual measures are often used in conjunction with textural and/or morphological measures during classification. Nevertheless, in all cases where contextual measures have been incorporated, classification accuracies have been increased.

3.2.4 Morphological measures

The role of morphological information in object-based classification is more significant than in pixel-based. Indeed, a key advantage of object-based over pixel-based image analysis is that the results of segmentation in object-based approaches are sets of meaningful regions for which a number of morphological features can be directly measured and used during the classification process. Moreover, some segmentation algorithms are able to create objects in different scales with different sizes and shapes. This multi scale or multi level image segmentation allows the classifier to utilize morphological properties of objects in various scales, resulting in higher classification accuracy for classes such as roads and buildings, which present in different sizes and shapes. The quantitative results of some studies showed an average accuracy of around 90% in terms of producer's accuracy (PA) for buildings and roads in a typical urban environment, when both spectral and morphological measures of VHR imagery are utilized in object-based classification.

3.2.5 DSM derived from LiDAR and stereo photographs

Recent developments in object-based image analysis and increasingly available LiDAR data and VHR imagery have directed researchers' attention toward their integration for classification purposes. Nevertheless, we learned that the use of LiDAR data along with VHR imagery for detailed land cover classification is still at an early stage of development, although they have exhibited potential in urban land cover mapping. Many of the published papers in recent years are conference papers and the results show that the incorporation of LiDAR data into the classification of VHR imagery can significantly solve the problem of differentiating high-rise and low-rise objects with similar spectral reflectance. For the case of integration of VHR imagery and photogrammetrically-derived DSM, very few papers have been found. With the availability of stereo VHR imagery from satellites such as QuickBird, GeoEye-1 and WorldView-2, the advances in object-based image analysis and precise DSM generation methods, the integration of VHR imagery and its photogrammetrically-derived DSM for mapping of complex urban landscapes is more feasible than before. It is worth mentioning that it is important to avoid misregistration problems between DSMs and VHR images. Almost all papers avoided the use of off-nadir VHR images in the classification. In the real world, however, more than 90% of VHR images are collected off nadir.
3.2.6 GIS data layer

Traditionally, existing GIS map layers such as road/street networks and building footprints have been used as reference data to evaluate the performance of classification. Recently, the potential of utilizing this vector data for improving classification accuracy has drawn increased attention from many researchers. Because GIS data layers are somewhat consistent with object-based classification input, i.e., object resulting from segmentation may share the same boundaries with GIS data, these data have been increasingly used to improve object-based classification. Nonetheless, the use of GIS data in classification, in the literature, is far less than that of other spatial measures (figure 2). Misregistration between GIS vectors and images still poses a great challenge for integration. Most papers used either low resolution images or nadir VHR images in the classification to avoid the errors introduced by misregistration.

4. Conclusion

Over the past decade, there have been ever-growing numbers of researchers studying on detailed land cover classification of urban areas. This is partly due to the fact that the differentiation amongst three major impervious classes in an urban scene (roads, buildings, and parking lots) becomes more feasible with the availability of VHR imagery. Due to the complex nature of urban landscapes as well as the spatial and spectral characteristics of VHR imagery, the classification of such landscapes requires not only spectral but also spatial information of the image. For this reason, the amount of literature using spatial information includes texture, context, morphology and information extracted from ancillary data such as DSM and archived GIS layers has grown since the launch of first VHR satellite in 1999. Although spatial measures have been used in both pixel-based and object-based classification approaches, the employment of them in the latter case is more effective mainly due the following reasons: 1) Determining the optimal window size of spatial measures, which is a critical issue in pixel-based classification methods, has been solved in object-based approaches by segmenting the image to individual objects with meaningful boundaries. 2) Contextual and especially morphological measures are more meaningful in the object-based image analysis. 3) Object-based approaches require less precise geometric registration between different data layers when ancillary data are employed in the classification.

However, the major drawback of object-based image classification is the lack of a high degree of automation. In fact, different rule sets must be developed for different image and applications. Among the three spatial measures extracted from the images, texture has most often employed in classification, especially in pixel-based approaches. Multiresolution segmentation of object-based approaches, on the other hand, enhances the capability of morphological measures to improve the classification of land covers such as buildings and traffic areas. The classification accuracies reported in literature indicate that morphological measures have significantly higher effect on differentiating classes such as buildings and roads than textural and contextual measures. The use of contextual measures in classification of VHR imagery is less than the use of textural and morphological measures. In addition, contextual measures have rarely been used as the only source of spatial measure in classification. Indeed, the effectiveness of such measures is enhanced when they are used in conjunction with other spatial measures (textural and/or morphological measures). The employment of LiDAR and especially photogrammetrically-derived DSM in urban land cover classification of VHR imagery is in the very early stages perhaps because of non-availability of LiDAR data and the rather low precision of photogrammetrically-derived DSM. Nonetheless, the results of our literature review reveal the very high potential of this type of data in conjunction with VHR imagery for land cover mapping of urban environments. With the widespread availability of VHR stereo aerial/satellite imagery and the development in object-based image analysis and precise DSM generation methods, the use of photogrammetrically-derived DSM in classification of VHR imagery over urban areas is more feasible than before and has a very high potential for future research. Also despite the availability of archived GIS data layers, this type of ancillary data has not been well utilized for classification purposes. The development of spatial modelling of available GIS data layers for incorporation into the classification process, particularly object-based classification approaches, would be another interesting topic for future research.

Acknowledgements

This research is supported by the NSERC (Natural Science and Engineering Research Council of Canada) Strategic Project Grants and NSERC Discovery Grants Programs.
References

Salehi, B., Zhang, Y. and Zhang, M., 2011a, Combination of Object-Based and Pixel-Based Image Analysis for the Classification of VHR Imagery Over Urban Areas. In the Proceedings of ASPRS 2011 Annual Conference, May 1-5, Milwaukee, Wisconsin, USA.

Salehi, B., Zhang, Y. and Zhang, M., 2011b, Object-based Land Cover Classification of Urban Areas using VHR Imagery and Photogrammetrically-Derived DSM. In the Proceedings of ASPRS 2011 Annual Conference, May 1-5, Milwaukee, Wisconsin, USA.

