
171

International Journal of Geoinformatics, Vol. 1, No. 1, March  2005

Go Yonezawa, Shinji Masumoto and Kiyoji Shiono
Department of Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto,
Sumiyoshi-ku, Osaka 558-8585, Japan
Tel: +81-6-6605-2594     Fax: 81-6-6605-3071     E-mail: goy@sci.osaka-cu.ac.jp

Abstract

The geologic function that assigns a unique geologic unit to every point in the objective three-
dimensional (3-D) space is a key element of a computerized geo-mapping. Algorithms for
construction and visualization of 3-D geologic models based on the geologic function have been
widely developed. As the concept of geologic boundary is not contained in the geologic function,
we newly define the generalized geologic function that assigns a pair of right above and right
below geologic units to every point in the objective 3-D space.
The generalized geologic function clarifies a boundary between geologic units to be visualized.
Visual Basic program Geomodel2003 was developed in order to visualize geologic boundaries on
the objective surface by embedding sub-routines for visualization of geologic boundary that had
been developed in Geomodel2000. We verified the utility of the previously proposed algorithm.
The Application of Geomodel2003 to a test data in the Honjyo area, Akita Prefecture, Japan,
proved that the proposed algorithm is valid for 3-D geologic modeling.
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3-D Geologic Modeling and Visualization of
Geologic Boundaries: Theory Based on The
Generalized Geologic Function

1. Introduction

It is necessary to carry out two steps to draw
a geologic map from a collection of observations,
(1) drawing a geologic boundary of geologic
units on topographic map, (2) painting areas
which are enclosed by geologic boundaries with
proper colors of geologic units. The method of
three-dimensional (3-D) geologic modeling
based on the logical model of geologic structure
has been developed by Sakamoto et al. (1993),
Masumoto et al. (1997) and Shiono et al. (1998),
and its actual visualization of 3-D geologic
model has been proposed by Masumoto et al.
(1999) using GRASS GIS and Sakamoto et al.
(2000) using Visual Basic program Geomodel
2000. It is possible to draw the 2-D geologic
map, the vertical geologic section and the 3-D
geologic map. However, there is still unsolved
matter with regard to visualization of geologic

boundaries, which is one of the most important
elements of any geologic map. To solve the
problem Masumoto et al. (2001) and Yonezawa
et al. (2002) proposed that there is a capability
for drawing a geologic boundary when we
determine the geologic units at grid points of
four corners using the geologic function in
Geomodel2000. However, there is a problem
that nonexistent geologic boundaries may dis-
play when the grid distance is expanded. Al-
though such a problem can be avoided practi-
cally when the grid distance is diminished, it is
still inadequate as a theory for drawing geologic
boundaries.

We propose the generalized geologic func-
tion which is improved on the geologic func-
tion to adjust the problem. In our approach, we
thought that it is most important to define the
generalized geologic function. It shows that
geologic a boundary can be drawn in the geolo-
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geologic units b
1
, b

2
 and b

0
 are expressed as

follows:

b
1
 = S

1
 ∩ S

2
Equation 3

b
2
 = S

1
 ∩ S

2
Equation 4

b
0
 = S

2
Equation 5

The distribution of geologic units b
0
, …,

b
n
 are defined by surfaces S

1
, …, S

q
. The logical

relation between the distribution of geologic
units and the surfaces is termed the logical
model of geologic structure.

2.2 Geologic Function
As the geologic units b

0
, b

1
, …, b

n
 are defined

by surfaces, they can be expressed in minset
standard forms (Gill, 1976). The minset is a
minimum subspace divided by the surfaces
S

1
, …, S

q
 in the space Ω. Each minset defined

by:

m 
d 1 d 2 ...d q

 = X
1
 ∩ X

2
 ∩ ... ∩ X

q  
Equation 6

S
k
 ; d

k
 = 0

where X
k
 =

S
k
 ; d

k
 = 1

( k = 1, 2, ... , q)

For example two surfaces S
1
 and S

2
 generate

four minsets as follows:

m 
00

 = S
1
 ∩ S

2
Equation 7

m 
01

 = S
1
 ∩ S

2
Equation 8

gic map using the generalized geologic function.
Further, we verified the utility of the proposed
algorithm previously. The example of applica-
tion for the geologic map including the geolo-
gic boundaries is shown by using Geomodel
2003.

2. Basic Theory

According to Shiono et al. (1994; 1998),
logical models of geologic structure, geologic
function and minset are explained simply as a
preparation to introduce the generalized geo-
logic function.

2.1 Logical Model of Geologic Structure
Let a 3-D space Ω be an objective survey

area and suppose that the space Ω is divided
into two subspaces by a surface S. S + and S 

_

give subspaces that lie above and below the
surface S, respectively (Figure 1). The surface
S is contained in subspace S 

_
. Then we have

the following relations:

S + ∪ S 
_
 = Ω Equation 1

S + ∩ S 
_
 = ∅ Equation 2

The space Ω is composed of n geologic
units b

1
, …, b

n
 and open space b

0
 (air). Figure

2 shows a simple geologic structure in the
vertical section. The geologic unit b

1
 represents

basement rocks. After sedimentation and
erosion, the geologic unit b

2
 is formed. Surface

S
1
 is a geologic boundary surface, and surface

S
2
 is a topographic surface. The distribution of

+

_

+

_

_

Figure 1: The objective space Ω is divided into

two subspaces on surface Figure 2: The simple geologic structures
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m 
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Equation 9

m 
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 = S
1
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Equation 10

When the logical model of geologic structure
is given, the distribution of geologic units b

0
,

…, b
n
 can be expressed in a union of minsets

generated by the surfaces S
1
, …, S

q
. In the case

of the geologic structure shown in Figure 2, the
geologic units are expressed as follows:

b
0
 = (S

1
 ∪ S

1
 ) ∩ S

2
 = m 

01
 ∪ m 

11

Equation 11

b
1
 = m 

00
Equation 12

b
2
 = m 

10
Equation 13

Then we can find the relation between a set
of minset M = { m 

00
, m 

01
, m 

10
, m 

11
 } and a set

of geologic units B = { b
0
, b

1
, b

2
 } as follows:

m 
00

 ⊂ b
1

Equation 14

m 
01

 ⊂ b
0

Equation 15

m 
10

 ⊂ b
2

Equation 16

m 
11

 ⊂ b
0

Equation 17

Let g
1
: M → B be a function that assigns

every minset to a geologic unit that contains
the minset. Table 1 gives the function for g

1
 the

geologic structure shown in Figure 2. Further,
for a point P (x, y, z) in a space Ω, a minset
m 

d 1 d 2 ...d q
 can be assigned a value of d

k
 = 0 or

d
k
 = 1 depending on whether P (x, y, z) lies S

k
or S

k
, respectively. This correspondence bet-

ween every point in the space Ω and minset is
expressed by a function g

2
: Ω → M. Therefore,

the function g: Ω → B is expressed to com-
pound the function g 

1
 and function g 

2
 as

follows:

g (x, y, z) = g
1
 ( g

2
 (x, y, z)) Equation 18

This function g that assigns a unique geo-
logic unit to every point in the space Ω is
termed the geologic function (Masumoto et al.,
1997). It shows that the five point P

1
, …, P

5
corresponds to value of g (Figure 3).

3. Generalized Geologic Function

Vε is a sphere whose radius is ε and its
center point P exists inside of the space Ω.
When point P exists in geologic unit b, sphere
Vε is also included in geologic unit b if it is
possible to make radius ε reasonably short. All
the value led geologic functions g of point P in
Vε comprises geologic unit b. However, when
point P exists on the boundary surface between
lower geologic unit b and upper geologic unit
b', two kinds of geologic units b and b' exist
in Vε which means that the value led geologic
function g can not be invariable no matter how
short radius ε may be. Using this property, we
propose a method to distinguish whether the
position of point P is in the geologic unit or on
the boundary surface.

+

+ +

+ +

_

_

+

_

Figure 3: The value of geologic function g

 on their five points

Table 1:The value of function g
1
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3.1 Right Above Minset and Right Below Minset
When minset m

0
 and m

1
 are generated by

the surface S which divides space Ω into two
subspaces, point P (x, y, z) on surface S is in-
cluded in m

0
 by definition (Figure 4). Point P’

(x, y, z_ε) lies lower than point P (x, y, z) by
infinitesimal distance ε (>0) is included in m

0
as well. The minset including point that lies
lower than point P (x, y, z) by an infinitesimal
distance is termed the right below minset of
point P. Point P" (x, y, z+ε) that lies above
point P (x, y, z) by an infinitesimal distance ε is
included in m

1
. The minset that include point

that lie above point P (x, y, z) by an infinitesimal
distance is termed the right above minset of
point P. It can be generally explained by minset
that are generated by the surfaces S

1
, …, S

q
.

divides the space Ω into two subspaces. When
the concrete properties of surfaces are shown,
character string c

1
, … c

q
 is defined by:

0 ; Point P lies lower than S
k

ck = * ; Point P lies on S
k

1 ; Point P lies higher than S
k

(k = 1, ... , q )
Equation 19

When point P does not exist on surface S,
character string is composed of binary number,
0 and 1. When point P exists on surface S,
character string include *. For example, point P
exists on the k th surface S 

k
 but not on other

surfaces, the k th character string c 
k
 in the

character string c
1
 … c

q
 becomes *, and the

other characters becomes either 0 or 1. When
it is considered that point P’ (x, y, z–ε) lies

lower than point P in an infinitesimal distance
ε, it should not be c

k
 = * but c

k
 = 0. Hence,

character string can be composed by only 0 and
1 when * is replaced with 0. If it is compre-
hended as a binary number, character string
adequately represent subscripts of minset in-
cluding point P from the definition of minset
and point P’ (x, y, z_ε) is also included in the
minset. Such minset is termed the right below
minset of point P. On the other hand, when it is
considered that point P’ (x, y, z+ε) lies upper
than point P in an infinitesimal dis-tance ε, it
should not be c

k
 = * but c

k
 = 1. Hence, character

string can be composed by only 0 and 1 when
* is replaced with 1. Point P is not included in
the minset which represents binary subscripts
corresponds to the character string, while point
P" (x, y, z+ε) is include in the minset. Such
minset is termed the right above minset of
point P.

When point P exists on plural surfaces, it is
included plural * in the character string. Thus,
we can introduce the concept of right above
and right below minset of point P. It is defined
generally as follows:

Let character string be c
1
 … c

q
. When all *

are replaced with 0, it is considered that the
character string is binary number. The minset
which represents binary subscript corresponds
to that character string is termed the right below
minset of point P. When all * are replaced with
1, it is considered that the character string is
binary number. The minset which represents
binary subscript corresponds to that character
string is termed the right above minset of point
P.

Therefore, there is defined a function g
2
' : Ω

→ M × M that assigns a pair of the directly
above and below minsets (m, m') to every point
P (x, y, z) in the objective 3-D space Ω. Next,
we explain an example of execution to obtain a
pair of directly above and below minsets (m,
m')

It can be shown that the five points P
1
, …, P

5
correspond to values of g

2
'. In the case of point

P
1
 (x

1
, y

1
, z

1
) that lies lower than both surfaces

S
1
 and S

2
, c

1
c

2
 is 00:

Figure 4: The right below and right above minset

of a point P
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g
2
' (x

1
, y

1
, z

1
) = (m 

00
 , m 

00
)

Equation 20

In the case of a point P
2
 (x

2
, y

2
, z

2
) on surface

S
1
 and lower than surface S

2
, c

1
c

2
 is *0. When

* interchanges 0 and 1, it gets two character
strings 00 and 10:

g
2
' (x

2
, y

2
, z

2
) = (m 

00
 , m 

10
)

Equation 21

In the case of a point P
3
 (x

3
, y

3
, z

3
) that lies

higher than surface S 
1
 and on surface S

2
, c

1
c

2
is 1*. When * interchanges 0 and 1, it gets two
character strings 10 and 11:

g
2
' (x

3
, y

3
, z

3
) = (m 

10
 , m 

11
)

Equation 22

In the case of a point P
4
(x

4
, y

4
, z

4
) on surface

S
1
 and that lies higher than surface S

2
, c

1
c

2
 is

*1. When * interchanges 0 and 1, it gets two
character strings 01 and 11:

g
2
' (x

4
, y

4
, z

4
) = (m 

01
 , m 

11
)

Equation 23

In the case of a point P
5
 (x

5
, y

5
, z

5
) on surface

S
1
 and surface S

2
, c

1
c

2
 is **. When * inter-

changes 0 and 1, it gets two character strings
00 and 11:

g
2
' (x

5
, y

5
, z

5
) = ( m 

01
 , m 

11
)

Equation 24

3.2 Generalized Geologic Function
Every point P in the space Ω corresponds

to a pair of minset (m, m') by function g
2
' : Ω

→ M × M. Therefore, minset m lies right below
point P corresponds to geologic unit g

1
 (m)

including the point by function g
1
: M → B.

Such geologic unit is termed “the right below
geologic unit of point P”. Minset m' lies right
above point P is corresponding to geologic unit
g

1
 (m') including the point by function g

1
 as

well. Such a geologic unit is termed “the right
above geologic unit of point P”.

Through this method, it is possible to define
the function g' : Ω → B × B that corresponds
to a pair of geologic units that lie in both right
above and below the point P. The function g ' is
termed the generalized geologic function. When
a pair of minset (m, m' ) corresponds to a pair of
geologic units (g

1
(m) , g

1
(m' )) by function g

1
' :

M × M  → B × B, the generalized geologic
function g' is possible to define by:

g' (x, y, z) = g
1
' (g

2
' (x, y, z)) Equation 25

It can be shows that the five points (P
1
, …,

P
5
) of Figure 3 corresponds to value of g' in

Figure 5. In the case of a point P
1
 (x

1
, y

1
, z

1
)

that lies lower than both surfaces S
1
 and S

2
:

g
2
' (x

1
, y

1
, z

1
) = (m 

00
 , m 

00
) Equation 26

g
1
 (m 

00
) = b

1
Equation 27

Therefore,
g' (x

1
, y

1
, z

1
) = g

1
' (g

2
' (x

1
, y

1
, z

1
))

= (g
1
 (m 

00
) , g

1
 (m 

00
))

= (b
1
 , b

1
) Equation 28

In the case of a point P
2
 (x

2
, y

2
, z

2
) , P

3
(x

3
, y

3
, z

3
), P

4
 (x

4
, y

4
, z

4
) and P

5
 (x

5
, y

5
, z

5
):

g' (x
2
, y

2
, z

2
) = (b

1
 , b

2
) Equation 29

g' (x
3
, y

3
, z

3
) = (b

2
 ,b

0
) Equation 30

g' (x
4
, y

4
, z

4
) = (b

0
, b

0
) Equation 31

g' (x
5
, y

5
, z

5
) = (b

1
 , b

0
) Equation 32

Figure 5: The value of generalized geologic

function g' on their five points
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3.3 Determiner Algorithm of Minset Right Below
and Right Above the Optional Point

The processing to determine the character
string and the processing to substitute * for 1 or 0
can be done all together as follows, yet it is
necessary to let the elevation of surface S

1
, …,

S
q
 dividing space Ω into two, upper and lower

be z
k
 = s

k
 (x , y) (k = 1, … , q ) and let the dif-

ference between the elevation H of point P
and z

k
 be D

k
 = H _ z

k
.

1. d
k
 (k = 1, ... , q ) are given by:
D

k
 > 0 ; d

k
 = 1

D
k
 = 0 ; d

k
 = 0 Equation 33

D
k
 = 0 ; d

k
 = 0

The q digit binary number d
1
'd

2
'...d

q
' re-

present the index of minset right below point P.

2. d 
k
' (k = 1, ... , q ) are given by:
D

k
  > 0 ; d 

k
' = 1

D
k
  = 0 ; d 

k
' = 1 Equation 34

D
k
  < 0 ; d 

k
' = 0

The q digit binary number d
1
'd

2
'...d

q
' re-

present the index of minset right above point P.
Minset right below and right above point P

can be determined by Equations 33, 34, yet it is
necessary to pay attention, when we introduce
this method into computer processing. Numeri-
cal calculation by the computer is approximate
calculation of finite numbers of digit. Since it
should not be D

k
 = 0 when we deal with dif-

ference D
k
 between point P and surface S

k
 as

real number. Point P should be a point on the
surface when point P (x, y, z) lies within the
elevation z

k
of surface in the range ± ε (Figure

6). In this case, Equations 33, 34 become as
follows:

1'. d 
k
' (k = 1, ... , q ) are given by:
D 

k
 > ε ; d 

k
= 1

|D 
k
 |  ε ; d 

k
 = 0 Equation 33'

D 
k
 < _ ε ; d 

k
 = 0

The q digit binary number d
1
d

2
...d

q
 represent

the index of minset right below point P.

2'. d
k
' (k = 1, ... , q ) are given by:
D

k
 > ε ; d

k
'=1

|D 
k
 |  ε ; d

k
' = 1 Equation 34'

D 
k
 < _ ε ; d

k
' = 0

The q digit binary number d
1
d

2
...d

q
 represent

the index of minset right above point P.

4. Geologic Modeling and Visualiza-
tion of Geologic Boundaries on Geo-
model2003

We added algorithms to distinguish the geo-
logic boundary using the generalized geologic
function and produced Visual Basic program
Geomodel2003. Examples of the various geo-
logic maps are presented in Figure 7 using
Geomodel2003. The study area (8.7 × 6.5 km)
is located in the Honjyo region of Akita Pre-
fecture, Northeast Japan using data extracted
from a geologic map (Osawa et al., 1977). The
mapped district is underlain by Neogene rocks
and Quaternary alluvium. The Neogene forma-
tions, 3,000 m to 5,000 m in total thickness,
consist mainly of sedimentary rocks with acid
tuff. The main part of this area is characterized
by intense folds with a general trend in the N-S
direction. The Quaternary alluvial deposits
unconformably overlay the Neogene forma-
tions, and are widely distributed along rivers

Figure 6: Determination of minset right below

and right above the optional point
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sections. The distribution of geologic units is
shown in Figure 7(a) as the 3-D geologic map.
Figure 7(b) is the 3-D geologic map in the case
of including the geologic boundaries. Figure 7
(c) is the 2-D geologic map. Figure 7(d) is the
vertical geologic section map on the line (A)_(B)
in Figure 7(c).

5. Conclusion

We defined the generalized geologic function
which corresponds to a pair of geologic units
laying both right above and right below the every
point in the objective 3-D space based on the
geologic function. It is possible to distinguish the
geologic boundary by applying the generalized
geologic function to points on surfaces. We deve-

loped the theory and algorithms to visualize the
geologic boundary, and through this concept
produced Visual Basic program Geomodel2003.
As we improved the sub-routine which had been
developed before, the geologic boundaries can
resultantly be visualized on various geologic
maps. There should be considerable potential
to represent geologic boundaries in the GRASS
GIS, when this method is introduced to GRASS
GIS.
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Figure 7: Example of the various geologic maps using Geomodel2003, (a), (b) the 3-D geologic map

(in the case of including the geologic boundaries and not.), (c) the 2-D geologic map,

(d) the vertical geologic section map on (c)
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