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Abstract

Geodatabases (also commonly known as geospatial databases) are central elements in spatial data
infrastructures. The primary advantage over file-based data storage of spatial databases (access via GIS), is
that they are structured to encompass existing capabilities of relational database management systems,
including support for SQL (Structured Query Language) and the ability to generate complex geospatial
queries. PostGIS is an extension to the PostgreSQOL object-relational database system which allows GIS
objects to be stored in the database. PostGIS comprises functions for basic analysis of GIS objects and more
importantly, it also supports the spatial indexing schemes. Indexes are extremely important for lavge spatial
tables, because they allow for quick retrieval of records durving query. PostGIS is frequently used during
analysis of large data sets if examination of spatial indexes is a particularly essential task. Reported here are
results of indexing the PostGIS databases by adopting an R-Tree-over-GiST (Generalized Search Tree)
scheme and evaluation of the performance of indexed and un-indexed spatial queries with respect to database
size. Experiments were carried out with a huge amount of spatial data obtained from the ESRI website, and
using the pgAdmin III tool, which is a comprehensive PostgreSQL database design and management system.
Experimental results demonstrate approximately linear increase in spatial index building time as the size of
tables increases, but, as the database size increases, processing time is very much greater if the spatial
queries are not indexed. However, regardless of the size of the geodatabase, performance of spatial queries is
highly sensitive to choice of geometric parameters that the queries refer fo.

1. Introduction

A spatial query, a special type of database query, is
supported by geodatabase structures. The queries
differ from SQL queries in several important ways.
Two of the most important are that they allow for
the use of geometry data types such as points, lines
and polygons and that these queries consider the
spatial relationship between these geometries.
Indexes of typical database systems supporting SQL
support rapid data retrieval but this approach is not
optimal for spatial queries. Instead, spatial databases
use a spatial index to speed up database operations.
Spatial indexes are what make feasible the query of
large data sets in spatial databases. Without
indexing, any search for a feature would require a
“sequential scan” of every record in the database.
Indexing speeds up searching by organizing the data
into a search tree which can be quickly traversed to
find a particular record.

By default, PostgreSQL DBMS (Database
Management System) supports three kinds of
indexes: B-Tree indexes, R-Tree indexes, and GiST
indexes. B-Trees are used for data which can be
sorted along one axis; for example, numbers, letters,
dates. GIS data cannot be rationally sorted along
one axis so that B-Tree indexing is not
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recommended for geodatabases. R-Trees (Guttman,
1984 and Gavrila, 1994) break up data into
rectangles, and sub-rectangles, and sub-sub
rectangles, and so on. R-Trees are used by some
spatial databases to index GIS data, but the
PostgreSQL R-Tree implementation is not as robust
as the GiST implementation (Ramsey, 2008). GiST
stands for “Generalized Search Tree” and is a
generic form of indexing. In addition to GIS
indexing, GiST is used to speed up searches on all
kinds of irregular data structures (integer arrays,
spectral data, and so on) which are not amenable to
normal B-Tree indexing. PostGIS (Ramsey, 2004),
which 1s a spatial database add-on for the
PostgreSQL relational database server, uses an R-
Tree index implemented on top of GiST to index
GIS data. R-Trees are able to handle well
compression because spatial data is organized into
nesting rectangles in order to facilitate fast
searching. Early versions of PostGIS used the
PostgreSQL R-Tree indexes. However, PostgreSQL
R-Trees have been completely discarded since
version 0.6, and spatial indexing is provided with an
R-Tree-over-GiST scheme. The nature of this type
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of indexing for PostGIS databases, not yet fully
explored, is reported in the following sections.

2. Indexing PostGIS Databases

2.1. PostGIS R-Tree-over-GiST Scheme

The Generalized Search Tree was originally
described by Hellerstein, ez a/. (1995). Tt is an index
structure offering a balanced, tree-structured access
method. It is easily extensible, both in the data types
it can index, and in the queries it can support.
Extensibility of queries is particularly important,
because it allows new data types to be indexed in a
manner that supports the queries natural to the
types. In addition to providing extensibility for new
data types, the GiST unifies previously disparate
structures used for currently common data types.
GiST acts as a template for implementing other
indexing mechanisms such as B+-trees and R-trees,
resulting in a single code base for indexing multiple
dissimilar applications.

GiST indexes have two advantages over R-Tree
indexes in PostgreSQL. First, GiST indexes are
“null safe”, meaning they can index columns which
include null values. The original R-Tree indexes in
PostgreSQL do not support this, so building an
index on a geometry column which contains null
geometries will fail. Secondly, GiST indexes
support the concept of “lossiness” which is
important when dealing with GIS objects larger than
the PostgreSQL 8Kb page size. Lossiness allows
PostereSQL to store only the “important” part of an
object in an index, e.g. in the case of GIS objects,
just the bounding box. GIS objects larger than 8Kb
will cause R-Tree indexes to fail in the process of
being built.

Taking full advantage of GiST and R-Tree, PostGIS
has deployed a GiST-related index that is more
accurately referred to “R-Tree over GiST”. With the
data partitioning scheme reliant on an R-Tree, the

GiST is utilized as the framework on which the
index is implemented. Moreover, the GiST-based R-
Tree has recently been applied the new linear node
splitting algorithm proposed by Ang and Tan
(1997). This algorithm has shown in many aspects
to be more efficient than the previously existed
algorithms, in terms of performance.

2.2. Timing GiST Index Building
To create a spatial index (GiST) in PostGIS, the
following standard SQL syntax is conducted:

The larger the spatial table, the more efficiency the
spatial indexes can bring utility to users. However,
building a spatial index in the large table format is a
computationally intensive procedure (Ramsey,
2008). A series of experiments was carried out to
measure the index building time using a spatial
dataset downloaded from the ESRT website. The so-
collected spatial data is comprised of line features:
roads of the thirteen southern states of the USA
(Figure 1). The computer configuration used for the
experiments reported here is: Intel Pentium 4, CPU
2.93GHz, and 1GB of RAM.

From the tabulation (Table 1) and plotting (Figure
2) of index building time versus the size of spatial
tables is tabulated it is seen that the time of index
building is virtually in direct proportion to the
number of table rows. Notable, is the considerable
time needed in index building of the largest table: as
a ‘rule of thumb’, 20 minutes for a table of 10
million rows.
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Figure 1: Road shape files of the thirteen southern states of the USA are used for
experiments about the PostGIS database operations




Table 1: Index building time versus the size of

spatial tables
Index building time
Number of rows
in spatial tables In milliseconds .
In minutes
(ms)
417 31 0.0005
204,114 11,875 0.1979
715,660 48,344 0.8057
2,792,865 200,062 3.3344
5,268,408 468,563 7.8094
8,481,083 965,016 16.0836
11,905,132 1,335,016 22.2503

3. Spatial Query Performance

3.1. Bounding Box Terminology

The efficiency of an index varies greatly according
to the kind of data that is being stored, and so the
scope for indexing spatial data, compared with
common relational data is slightly different: for
instance, different spatial data indexing methods are
used for point, line and polygon data. In the case of
collections of polygons, instead of indexing the
object geometries themselves, whose shapes might
be complex, an approximation of the geometry is
deployed to index it. The approximation most
commonly used is the so-called minimum bounding
box.

For the sake of pedagogy, the PostGIS ST Envelope
(geometry) function, which returns a polygon
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representing the minimum bounding box of the
supplied geometry, can be used to comprehend the
bounding box term. The polygon is defined by the
corner points of the bounding box ((MINX, MINY),
(MINX, MAXY), (MAXX, MAXY), (MAXX,
MINY), (MINX, MINY)). Degenerate cases will
return a geometry of lower dimension than
POLYGON, i.e. POINT or LINESTRING. In more
specific terms, if a bounding box is a point then a
POINT is returned, and if a bounding box is 1-

Figure 2: Index building time versus number of

rows in spatial tables
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dimensional, a LINESTRING is returned. Otherwise
a POLYGON is returned. The following figures
depict the bounding boxes of specific geometrical
types (mostly polygons). Some degenerate cases are
presented in the last ones.
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Figure 3: Bounding boxes corresponding to geometry types. Note some degenerate cases: (g)-(k)
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The bounding box of a geometry in PostGIS is
represented internally using floatds instead of
float8s that are used to store geometries. The
bounding box coordinates are floored, guaranteeing
that the geometry is contained entirely within its
bounds. Thus a geometry’s bounding box is half the
size as the minimum bounding rectangle, which
brings significantly faster index building and
general performance. But it also means that the
bounding box is not the same as the minimum
bounding rectangle that bounds the geometry.
Noting that geometric testing against a bounding
box is constant, it is clear that use of the bounding
box as the geometric key for building the spatial
index can save the cost of evaluating expensive
geometric predicates during index traversal.

3.2. Indexed and Un-Indexed Query Evaluations

It is important to note that spatial indexes are not
used automatically for every spatial comparison or
operator. In fact, because of the “rectangular” nature
of the R-Tree index, spatial indexes are only good
for bounding box comparisons. Thus, all spatial
databases implement a “two phase” form of spatial
processing (Figure 4). The first phase is the indexed
bounding box search, which runs on the whole table.
The second phase is the accurate spatial processing
test, which just runs on the subset returned by the
first phase. Tn PostGIS, the first phase indexed
search is activated by using the “&&” operator. This
“&&’symbol has a particular meaning: “bounding
boxes overlap”. Actually, the definitions of indexed
functions are SQL expansion functions that re-write
the query using indexed operations (&&) and un-

indexed functions. Indexed function calls will
automatically include a bounding box comparison
that will make use of any indexes that are available
on the geometries. Un-indexed function calls will be
performed conventionally by sequentially scanning
all rows of tables.

Tt is however important to be aware that the
implementation of this “two phase” spatial query
model will not always bring advantage. The
problem, which could be solved by applying the so-
called The Oversized-Attribute Storage Technique
(TOAST), appears if a table stores rather large
geometries (over the commonly fixed page size:
8Kb), but not too many rows of them. Dealing with
this issue, the PostGIS users are trying to compose
the query estimation TOAST-aware designed to
execute a process of two workarounds by adding a
column in the table that contains the bounding box
of geometry (Ramsey, 2008).

In order to compare performances (in terms of
processing time) of indexed and un-indexed queries,
experiments using popular spatial relationship
functions were conducted on the spatial datasets that
were mentioned in section 2.2. Four typical
geometry relationship functions selected herein are:
(spatially) intersect, cross, within, and cover. The
pgAdmin III tool is used to measure the running
time of queries. The average time of three tests on
the same query performed on the specified table is
recorded as the final processing time assigned for
that query.

The PostgreSQL database configuration used for
experiments is written out as follows.

Table where
Index retricves

Procedurcs that determine

coordinatcs arc —
area of interest
stored

= . -
exact relationship

Figure 4: The two-step spatial query model: the first step benefits by spatial index and then spatial functions
actually are involved only in the second step operation as conducted on the reduced
dataset sub-setting by the first step
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Optimal parameter configuration in terms of
application is reflected in significantly faster
processing time (Ramsey, 2007). Our tests however
were all run in the same computer configuration as
was the case for experiments described in section
2.2,

Five PostGIS-database tables with different sizes are
created by “loading” ESRI road shape files. Table
size depends on the number of roads that the shape
file presents. The descriptions of shape files in terms
of spatial coverage areas are presented case-by-case
in Table 2.

Table 2: Spatial coverage of shape files used to create the PostGIS database

D.atabases Shape files containing road network of areas, which are
having number . 1
indicated by
of rows
204,114 | 1 rectangle inside the Texas state’s boundary (Figure 5)

2,792,865 | 1 state: Texas

5,268,408 | 5 states: New Mexico, Texas, Oklahoma, Arkansas, and Louisiana
8 states: Arizona, New Mexico, Texas, Oklahoma, Arkansas,

8,481,083 . S
Louisiana, Mississippi, and Tennessee

11,905,132 | 13 states: All states appearing in Figure 5

3.2.1. Intersects and Crosses Functions Experiments
Figure 5 represents the location of the second spatial
parameter (across long line) of the “intersects” and

“crosses” functions applied to experimental queries.

eat
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Figure 5: Spatial position of the across long line used for queries with the
“Intersects” and “Crosses” functions

Table 3: Performing time of “intersects” indexed and un-indexed queries

ST Intersects vs ST Intersects

Row number

Indexed timing (ms) | Un-indexed timing (ms)

204,114 109 1,500
2,792,865 282 23,359
5,268,408 485 42,469
8,481,083 875 69,453
11,905,132 1,016 126,063
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Table 4: Performing time of “crosses” indexed and un-indexed queries

ST Crosses vs _ST Crosses

Row number

0 3,000,000

6,000,000 9,000,000 12,000,000

Indexed timing (ms) | Un-indexed timing (ms)

204,114 110 1,578

2,792,865 281 24,156

5,268,408 485 42,703

8,481,083 906 67,891

11,905,132 1,031 118,734

Tirre (ms) Intersects queries  —e—Indsxed  —8— Unindexed Time (ms) Crosses gueriss —e—Indexed  —8— Unindexed

140000 140000
120000 120000
100000 100000
80000 80000
60000 60000
40000 40000
20000 20000

0 3,000,000

£,000,000 9,000,000 12,000,000

Figure 6: Diagram illustrated performing time of
“Intersects” queries

The larger the size of database tables, the more
remarkably the difference between indexed and un-
indexed queries occurs. For instance, in case of the
“intersects” function, the ratio of performing time
between indexed and un-indexed queries in the 200
thousand-row table is approximately 14 whercas
this number is about 115 in the 11 million 900

3.2.2. Within and Covers Functions Experiments

Two scenarios are investigated in order to evaluate
the performance of queries that take different spatial
(geometry) parameters. The first scenario is tested
with a large rectangle polygon (Figure 8) that
spatially exceeds the coverage of some small tables.

Figure 7: Diagram illustrated performing time of
“crosses” queries

thousand-row table. The same situation is recorded
in the “crosses” queries. With regard to the tendency
of performing time towards the size of tables, both
indexed and un-indexed queries offer nearly lincar
dependences. Nevertheless, the variance against
table sizes of un-indexed queries is much higher
than that of indexed queries.

In contrast, the second scenario uses a small triangle
polygon (Figure 11), which is completely inside the
coverage of spatial tables, as a spatial parameter for
“within” and “covers” functions.

Scenario 1
Cklahoma - Tennesses North Carolina
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_ " MississipiAlbama ” Georgia
“Texas o :
; Lowsiana *. |
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& 4500000 3000000 4 00C. 000

Figure 8: The large rectangle polygon demonstrates the geometry used for queries with the
“Within” and “Covers” functions
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Table 5: Performing time of “within” indexed and un-indexed queries in scenario |

ST_Within vs _ST Within
Row number
Indexed timing (ms) Un-indexed timing (ms)

204,114 63109 62593
2,792,865 760500 750953
5,268,408 1040031 1076922
8,481,083 1379156 1503391
11,905,132 1514312 1685281

Table 6: Performing time of “covers” indexed and un-indexed queries in scenario 1

ST _Covers vs _ST Covers
Row number
Indexed timing (ms) Un-indexed timing (ms)
204,114 61937 61000
2,792,865 721344 715172
5,268,408 1173390 1101359
8,481,083 1395969 1411172
11,905,132 1451735 1618891
Time (ms) Within queries —e—Indexed ~ —m— Unindexed Time (rrs) Covers gueries —e—lndexed  —#— Unindaxad
1800000 1800000
1600000 1600000
1400000 1400000
1200000 1200000 |
1000000 1000000
800000 800000
600000 600000
400000 400000
200000 200000
0 0
0 3,000,000 6,000,000 9,000,000 12,000,000 0 3,000,000 6,000,000 8,000,000 12,000,000
Figure 9: Diagram illustrated performing Figure 10: Diagram illustrated performing
time of “within” queries in scenario 1 time of “covers” queries in scenario 1
Clearly shown, is the inefficiency of indexed queries From the outcomes of queries, time consumed by
in the first scenario when the container parameters indexed queries is higher than time consumed by
(rectangle) in “within” and “covers” functions are un-indexed queries. In these cases, the resultant sets
spatially larger than the coverage of experimental of queries are all records of tables so that the two-
road shape files. Take, for example, the first two phase indexed queries take a longer time than the
cases of both “within” and “covers” experiments in un-indexed queries, which simply use the sequential
scenario 1. scanning method.
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Scenario 2
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Figure 11: Spatial position of the small triangle polygon used for queries with the
“Within” and “Covers” functions

Table 7: Performing time of “within” indexed and un-indexed queries in scenario 2

ST_Within vs _ST_Within

Row number
Indexed timing (ms) Un-indexed timing (ms)
204,114 14797 16765
2,792,865 15671 29938
5,268,408 15812 47468
8,481,083 15954 71094
11,905,132 16235 118844

Table 8: Performing time of “covers” indexed and un-indexed queries in scenario 2

ST_Covers vs _ST_Covers

Row number
Indexed timing (ms) Un-indexed timing (ms)
204,114 14734 15609
2,792,865 15265 29156
5,268,408 17547 39078
8,481,083 18125 53080
11,905,132 19547 115782
Time (ms) Within queries —e—lIndexed  —a— Unindexed Tirme (ms) Covers queries —e—Indexed  —— Unindexed
140000 140000
120000 120000
100000 100000
80000 80000
60000 60000
40000 40000
20000 20000
0 Rows 0 Rows
0 3,000,000 6,000,000 9,000,000 12,000,000 0 3,000,000 6,000,000 9,000,000 12,000,000

Figure 13: Diagram illustrated performing time

Figure 12: Diagram illustrated performing time strat r
of “covers” queries in scenario 2

of “within” queries in scenario 2
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Scenario 2 typifies the kind of spatial query
advantaged by taking the indexed approach:
obvious/significant advantages accrue when only
the relevant records are called for. As the table size
rises, the difference between the indexed and un-
indexed approach to queries becomes wider. The
indexed query performing time varies little with
table size: 14 thousand milliseconds for the 200
thousand-row  table whereas 16  thousand
milliseconds are for the 11 million 900 thousand-
row table. On the contrary, the performing time of
un-indexed queries tends to be exponentially
increasing with the size of tables.

Examining both scenarios simultaneously, with the
same database and the same spatial-relation function
in queries, but the different geometric parameters in
functions, can lead to differences in performance
time. For example, with the same 200 thousand-row
table and using the “covers” query, the scenario 1
takes around 62 thousand milliseconds for the
indexed query and 61 thousand milliseconds for the
un-indexed query whereas in the scenario 2, these
numbers are only 15 thousand milliseconds and 16
thousand milliseconds respectively. This is due to
the difference in spatial parameters of functions: the
scenario 1 uses the large rectangle whereas the
scenario 2 uses the very small triangle.

4. Conclusions

PostGIS is an extension to the PostgreSQL
relational database system which provides spatial
database functionalities: spatial objects, spatial
indexing, standard input/output representations,
spatial functions and spatial operators. Building
spatial indexes in PostGIS is a relatively time-
consuming task. The implementation of GiST
indexes in PostGIS has included a near linear-time
algorithm for building R-Trees, which improved

substantially, the scalability and performance of
database operations.

The results reported here also emphasize the
indispensable role of the GiST indexing scheme and
indexed spatial queries in PostGIS databases.
Without them, PostGIS spatial databases would
simply serve no practical purpose because size of
GIS objects is usually rather large. The R-tree-over-
GiST spatial index has been implemented for high
speed spatial querying. It is very important when the
gap between indexed and un-indexed performances,
is significant, as is shown in this study.
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