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Abstract

This paper has presented artificial neural networks (ANNs) for rare vegetation communities’ classification
using remotely sensed data. Three variants of training of the Multi Layer Perceptron (MLP) based on three
different classification schemes are used. At first 12 types of rare vegetation communities were defined and
the main classification scheme was designed on that basis. After preliminary statistical tests for training
samples, two modification algorithms of the classification scheme were defined.: the first one led to creating a
scheme, which consisted of 7 classes, and the second one led us to creating of 5 classes’ scheme. Testing
results show that the use of ANNs of 5 classes’ scheme can produce higher classification accuracies than
other alternative. The training procedures of these classifiers are described in details along with analysis and
post processing products using Geoinformation Technologies. Ancillary geospatial data: DTM and its
derivable (DEM, Slope, Aspect), as well as topographical, hydrological data and land use maps were created
in order to support post classification operations. This result demonstrates that a level of classification
accurvacy achieved by artificial neural networks is higher than those generated by the statistical classifiers.

1. Introduction

The interpretation of remotely sensed data uses
techniques from a number of disciplines including
remote sensing, pattern recognition, artificial
intelligence, computer vision, image processing and
statistical analysis. The move towards automated
analysis of remotely sensed data is encouraged by
the ever increasing volumes of data as well as by the
high cost of ground surveying. The new generation
of satellite-borne instruments is providing higher
spatial and spectral resolution data, leading to the
wider application of remotely sensed products and
further emphasizing the need for more automated
forms of analysis. A number of methodologies have
been developed and employed for image
classification from remotely sensed data within the
past 20 years. Statistical image classification
techniques are ideally suited for data in which the
distribution of the data within each of the classes
can be assumed to follow a theoretical model. The
most commonly used statistical classification
methodology is based on maximum likelihood, a
pixel-based probabilistic  classification method
which assumes that spectral classes can be described
by a normal probability distribution in multispectral
space (Swain and Davis, 1978). This traditional
approach to classification is found to have some
limitations in resolving interclass confusion if the
data used are not normally distributed.
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As a result, in recent years, and following advances
in computer technology, alternative classification
strategies have been proposed. In most instances,
human beings are good pattern recognizers. This
observation led researchers in the field of pattern
recognition to consider whether computer systems
based on a simplified model of the human brain can
be more effective than the standard statistical and
knowledge-based classification methods. Research
in this field led to the adoption of artificial neural
networks (ANN), which have been used in remote
sensing over the past ten years, mainly for image
classification. An important characteristic of ANNs
is their non-parametric nature, which assumes no a
priori knowledge, particularly of the frequency
distribution of the data. Because of their adaptability
and their ability to produce results with
classification accuracies that are higher than those
generated by statistical classifiers, the use of ANNs
has spread in the scientific community at large,
leading to an increasing amount of research in the
remote sensing field (Paola and Schowengerdt,
1995b and Atkinson and Tatnall, 1997). The
network comprises a large number of simple
processing elements linked to each other by
weighted connections according to a specified
architecture. These networks learn from the training
data by adjusting the connection weights.
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There 18 a range of artificial neural network
architectures designed and used in various fields,
including pattern recognition (Bishop, 1995). In
remote sensing applications, the multi-layered feed-
forward network, also called the multi-layer
perceptron, is generally used (Benediktsson et al.,
1990, Zhang and Scoficld, 1994 and Foody, 1995a).
The structure of the neural-network makes it very
easy to incorporate ancillary data or spatial
information. Determination of the ‘best’ bands that
are assigned to the input neurons of an artificial
neural network (ANN) is one of the critical steps in
designing the ANN for a particular problem.
Methods used to select the optimum inputs are
known as feature selection technigues. Their use in
the context of artificial neural networks was
investigated in study (Kavzoglu and Mather, 2002).
A method for improving artificial neural network
performance by using multi-temporal, multi-spectral
and multi-source remotely-sensed data as features
(optimum inputs) for classifying agricultural crops
is described in another paper (Oliveira et al., 2003).
ANNs models of multi-layer feed-forward
perceptron were designed using NDVI (Normalized
Difference Vegetation Index), EVI (Enhanced
Vegetation Index), red (RED) and near infrared

(NIR) reflectance values as input patterns,
respectively by Bocco et al., (2007) and Walthall et
al., (2004).

2. Study Area

The Study Area (Sangachal) is located on the coast
of the Caspian Sea, 45 kilometers (km) south of
Baku, Azerbaijan with an area of around 100 km’
(Figure 1). It is positioned with latitude 40°10'10"N
and longitude 49°27'45"E.

3. Data used and Methodology

Two TKONOS images acquired in July 2005 and
June 2006 were used for the delineation of 12 rare
vegetation communities and soil types. The images
being used were pan-sharpened multi-spectral
images at resolution of 1m. It has well defined test
site for 12 classes on the both images where training
and test samples were gathered from. The
Multilayer Perceptron (MLP), a feed-forward
artificial neural network model is used in rare
vegetation community’s  classification  using
remotely sensed data. And back propagation
learning algorithm, also called the generalized delta
rule, was an iterative gradient descent training
procedure.
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Figure 1: Map of the study area
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A Specialized GIS was used as software
environment  for performing of workflow
comprising of jobs connected with collecting of
samples, hosting of classifier training and producing
software as well as classification results analysis.
We used ArcGIS Desktop 9.2 with its extensions
(Spatial Analysis and 3D Analysis) as base (core)
GIS. Using this software, we created Geographical
Data Base consisting of relevant spatial data
(Orthorectified satellite multi-spectral data, ancillary
data: various spectral Indexes, DEM, Slope, Aspect
as well as vector Topographical data) and Map
template. We also developed and built our tools in
Core GIS and Ul for managing/automating all
processes during the  project lifetime:
collecting/gathering of training and test sets of
samples, designing, and learning, testing of ANNs
and performing of classification on real data.
Combination of these data and software we called
Specialized GIS for solving applied tasks using RS
data and ANNS.

4. Definition of the Classification Scheme

Initially 12 types of rare vegetation communities
and soil types were defined that—according to
ecologists’ opinion—are indicators of anthropogenic
impact on environment in the region being studied.
Below the names of them including their Latin

analogs (in parenthesis) are presented (Table 1).
Ecologists presented the geographical coordinates of
these vegetation communities. At first, these sites
were geolocated, then using GIS procedures the
areas of location of these vegetation communities
were determined for extraction of samples for the
classifier training and testing. For the MLP classifier
training, sizes of training and test sets of samples for
the 12 classes scheme were defined. The training
and test sets of samples were tested for
representativeness and separability based on their
calculated statistical parameters. These tests have
shown that: Class 1 and Class 4 have heavily
overlapped each other; Class 6 has completely
contained Class 5; Class 7 and Class 8 have heavily
overlapped each other; Class 10 has completely
contained Class 9 and Class 3. These tests pointed
out to a direction of possible modification of “Initial
classification scheme”. The algorithm of this
modification is presented (Table 2). Using this
algorithm, we created new training and test sets,
which were combination of one or more classes
from the Initial sets of samples. Having received the
new sets, we performed the same statistical tests of
representativeness and separability. It led us to
defining a new classification scheme consisted of 5
classes. The algorithm of this modification is
presented (Table 3).

Table 1: The Initial classification scheme - 12 types of vegetation communities and soil

Class number Full name of vegetation communities and soil types
Class 1 Chal meadow / Reedbed wetland
Class 2 Chal meadow / Tamarix scrub (Tamarix)
Class 3 Coastal zone semi desert
Class 4 Phragmites australis reedbed wetland (Phragmaties australis)
Class 5 Salsola ericoides
Class 6 Salsola nodulosa
Class 7 Salsola nodulosa / Artemesia lerchiana
Class 8 Salsola Nodulosa /Grasses
Class 9 Semi desert vegetation, Kalidium caspicum (Kalidium caspicum )
Class 10 Semi desert scrub alhagi dominated (Alhagi pseudoalhagi)
Class 11 Bare ground
Class 12 Salsola nodulosa / Bare ground

Table 2: Modified classification scheme (7 classes) of vegetation communities and soil types

Class number Full name of vegetation communities and soil types

Class 7 1 Init. Classl + Init. Class 4 - Chal meadow / reedbed wetland + Phragmites australis reedbed
- wetland

Class 7 2 Init. Class 2 - Chal meadow / Tamarix scrub

Class 7 3 Init. Clqss 3+ I.ni.t. Class 9 + Init.Class.IO - Coastal zone s.emi d.esert + Semi desert
- vegetation, Kalidium caspicum + Semi desert scrub alhagi dominated

Class 7 4 Init. Class 5 + Init. Class 6 - Salsola ericoides + Salsola nodulosa

Class 7 5 Init. Class 7 + Init. Class 8 - Salsola nodulosa / Artemesia lerchiana + Salsola Nodulosa /
- Grasses

Class 7 6 Init. Class 11 - Bare ground

Class 7 7 Init. Class 12 - Salsola nodulosa / Bare ground
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Table 3: “Optimized scheme” (5 classes) of vegetation communities and soil types

Class Full name of vegetation communities and soil types

number

Class 1 Init. Class 1 + Init. Class 4 - Chal meadow / reedbed wetland + Phragmites australis reedbed
wetland

Class 2 Tnit. Class 2 - Chal meadow / Tamarix scrub

Class 3 Init. Class 5 + Init. Class 6 + Init. C_lass 7 + Init. Class 8 - Salsola ericoides + Salsola nodulosa +
Salsola nodulosa / Artemesia lerchiana + Salsola Nodulosa /Grasses

Class 4 Init. Class 11 - Bare ground

Class 5 Init. Class 12 - Salsola nodulosa / Bare ground

We called this scheme as “Optimized classification
scheme.” Having received new sets, we performed
the same statistical tests for representativeness and
separability, which show the advances have come
using new optimization of classification scheme.
There still was a small overlapping between Class
51 and Class 5 2, Class 5 4 and Class 5 5.
However, it was a high probability that after neural
classifier would have been trained, it would be able
to overcome these uncertainties and clearly
recognize thin transitions between objects from
these classes. Subsequent testing of quality of
collected samples was going to be performed during
classifier training procedure.

5. The Main Results of the Classifiers’ Learning
Training of a neural network requires that the user
specifies the network structure and sets the learning
parameters. Heuristics proposed by a number of
researchers to determine the optimum values of
network parameters were compared (Kanellopoulos
and Wilkinson, 1997, Kavzoglu, 2001 and Kavzoglu
and Mather, 2003). The input layer consisted of 4
neurons, cotresponding to four spectral channels of
IKONOS satellite data: we used the red, green, blue,
and near infrared (NIR) channel. The hidden layer
had 25 neurons and the output layer had 12 neurons
for the “Initial set”, 7 for “Modified set” and 5 for
“Optimized set”, respectively. An activation
function was hyperbolic tangent.

The back propagation algorithm was used for neural
network training. A network structure of 4-25-12
was trained with the learning parameters listed in
Table 4. For evaluation of training process, we used
the following quality parameters:

® The Mean Square Error (MSE); Having reached
threshold set for the MSE level of 0.01 the
training process was stopped;

o The Correlation coefficient (r), which reflects the
degree of correlation between directions of
changing of real and desired outputs of the neural
network;

e % Error - Error per element of the neural
network.

The accuracy of classification has traditionally been
measured by the overall accuracy by generating a
confusion matrix and determining accuracy levels
by dividing the total number of correctly classified
pixels (sum of major diagonal of confusion matrix,
also called actual agreement) by the total number of
reference pixels. The accuracy of classification has
traditionally been measured by the overall accuracy
by generating a confusion matrix and determining
accuracy levels by dividing the total number of
correctly classified pixels (sum of major diagonal of
confusion matrix, also called actual agreement) by
the total number of reference pixels.

Table 4: Optimum setting of network structure and learning parameters

Parameters Choice
Initial weight range [0, 0.05]
Number of input nodes 4
Number of hidden layers 1
Number of hidden nodes 25
Learning rate between input and hidden layers 0.5
Momentum term between input and hidden layers 0.7
Learning rate between hidden and output layers 0.25
Momentum term between hidden and output layers 0.7
Type of activation function hyperbolic tangent
Error threshold ery,.q, 0.01
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When we reached the maximal number of iterations
and the training process was stopped, we compiled
confusion matrix with the results of recognition of
samples from training sets (so called self-testing
procedure). We estimated the common degree of

correctness CDC (the level of classification
accuracy) by the following formula:
€DC =100% % (Neerg ! Nyprar)
Equation 1

Where, Noees ™

samples; N

intal

number of correctly classified
- total number of samples. ANNs

results obtained from the configuration given in
Table 4 for training and test samples are presented
in Table 5 and Table 6, respectively.

5.1 Training Results - the Initial Classification
Scheme (12 Classes)

To analyze the results, confusion matrices were
generated using the three classification schemes.
The confusion matrices computed on the results of
the classifier training of “Initial classification
scheme” have shown that: CDC = 91.63% (for
training samples) (Table 5);

CDC = 81.39% (for test samples) (Table 6).

CDC was quite high; however, review that is more
careful showed that this result was based on high
results of recognition of samples from three densely
populated Classes with numbers: 1, 2 and 6 from the
Initial classification scheme (see Table 1). For Class
3 and Class 10 classification results were found as
unpredictable. Class 7 shiclded Class 8. Results for
Class 11 and Class 12 were found as high as for
Class 1, Class 2 and Class 6. Though the maximum
number of iterations was reached, the MSE value
was far from its threshold set of 0.01 and the
correlation coefficient ¥ value was also far from
optimal (of 1), and the % Error value also was high
enough. All these factors pointed out that the
training procedure being performed using this
classification scheme was mnot successful.
Furthermore we tested this classifier for samples of
test sets, which were not used in the training
procedure. The results were worsened as we had
expected. The value of CDC was equal to 81.39 and
the main character of shortcomings remained the
same (Table 6). These results proved conclusions
about inadequacy of “Initial classification scheme”
which were based on the results of preliminary tests.

Table 5: ANN results for three classification schemes for training samples

Quality parameters Initial scheme Modified scheme Optimized scheme
(12 classes) (7 classes) (5 classes)
Iteration 25000 25000 15000
Mean Square Error (MSE) 0.0382 0.0417 0.0361
Correlation coefficient (r) 0.7822 0.8898 0.9632
Error per element of the neural network (% error) 1.2823 1.4983 1.5031
Common degree of correctness (CDC), % 91.63 94.61 96.37

Table 6: ANN results for three classification schemes for test samples

Quality parameters Initial scheme Modified scheme Optimized scheme
{12 classes) {7 classes) (5 classes)
Mean Square Error (MSE) 0.0795 0.0983 0.0745
Correlation coefficient (r) 0.6960 0.7734 0.9107
Error per element of the neural network (% etror) 1.9938 2.5686 2.0283
Common degree of correctness (CDC), % 81.39 85.8 91.45

5.2 Training Results - the Modified Classification
Scheme (7 Classes)

The confusion matrices computed on the results of

the classifier training of “Modified classification

scheme” have shown that:

CDC = 94.61% (for training samples) (Table 5);

CDC = 85.8% (for test samples) (Table 6).

As it was expected, the value of CDC increased but

it still was much less, than desired threshold set of

90%. Besides, it was revealed that:
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+ The MSE value increased (in comparison with
analogous self-testing of the classifier for Initial
classification scheme);

» Learning procedure was not robust as the
correlation coefficient () value diminished to a
small value;

* The Error per element (% Error) value increased
too.

In the whole, the results of testing of the classifier

trained on ‘“Modified classification scheme”

approved the statistical tests results about the
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necessity for transferring it to 5 class’s classification
scheme called as “Optimized classification scheme”.

5.3 Training Results. The Optimized Classification
Scheme (5 Classes)
The confusion matrices computed on the results of
the classifier training of “Optimized classification
scheme” (5 classes) have shown that:
CDC = 96.37% (for training samples) (Table 5);
CDC = 91.45% (for test samples) (Table 6)
These results are a good enough. These results have
shown a little overlapping between Class 1 and
Class 2. However, it is in an acceptable extent.
There are still some shortcomings concerning the
quality parameters. The value of MSE is remarkably
higher than the minimum threshold value of 0.01.
However, the high value of correlation coefficient
(r) reflects the fact that the training process has had
robust character at this stage. This fact points out
that there have been realized certain regularities in
the learning process and adapting of the classifier to
these regularities is going on successfully.
Summarizing the classifier testing results, we can
conclude that beside some realized uncertainties in
recognizing of test samples and non-ideal values of

quality parameters being received, the “Optimized”
neural classifier has been trained properly. Results
produced by other two classifiers (“Initial” and
“Modified”) on test datasets were found lower than
90% threshold of CDC (Table 6.). In comparison, a
Maximum Likelihood classifier (MLC) using the
same datasets produced an overall classification
accuracy (common degree of correctness) Table 7:
This result demonstrates that levels of classification
accuracy achieved by artificial neural networks is
higher than those generated by the statistical
classifiers. The artificial neural networks designed
using the guidelines recommended in this paper
could identify the rare vegetation with around 3%
better accuracy than the Maximum Likelihood
Classifiers (MLC). In case of arising difficulties in
production period, additional geospatial data (DTM
and its derivable, other topographical, hydrological
data as well as land use information and etc.) could
be involved into the process for ANNs classification
and the problems of recognition of abjects would be
solved (Figure 2). There are another methods which
determinate the quality of classification products.
Among them a visual analysis of the results of the
classification is very important.

Table 7: MLC results for three classification schemes for test samples

Quality parameter Initial scheme Modified scheme Optimized scheme
(12 classes) (7 classes) (5 classes)
Common degree of correctness (CDC), % 78.51 83.64 88.93

Ho- 1427162409
[0 142716241 - 4,535922009
17]4,50892291 - 9. 137345518
[19.197845519 - 1965905677
] 14.65905678 - 20,40772041
[l 2043772042 - 26, 73123941
[D26.72123942 - 33.62962377
E32.62062378 - 11.67773586
u "-4_1.6_7.?_7338? - ?3.23§§'?‘386

a) Ancillary data: Slopc

[Flat (-1
Ml riorth {0-22.5)
[Northeast (22.567.5)
[East {67.5-112.5)

[ Southeast {112.5-157.5)
[1South {157.5-202.5)

MR Southwest {202,5-247,5)
I est(247,5-292,5)

Il Northwest (292,5-337.5)
I Horth {337, 5-360)

b) Ancillary data: Aspect

Figure 2: Ancillary data
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6. Visual Analysis of Classification Results

A full scene of IKONOS satellite image covering
area about 100 km” was used in these investigations.
After completion of training procedures, a datasets
covering this scene were classified by neural
network according to all three classification
schemes described above. The resulting images
representing themselves as thematic rasters were
analyzed. Using the Geolnformation technologies,
amount of non-classified and not exactly classified
pixels was estimated. Below the results of this
analysis are presented. The various aspects are
highlighted by presenting pairs of images: the first

one is classification results of the classifier trained
on the Optimized classification scheme and the
second 1is a product of the classifier trained on the
Initial classification scheme. A general view of the
products of these classifiers on overall scene is
presented (Figure 3). The classified pixels are
presented in the light grey color and the non-
classified pixels are presented in the black color. It
is easy to notice that the thematic raster representing
results of the classification on the Initial scheme has
been heavily distorted. There is one difference that
is more characteristic: thin transitions between high-
density vegetation communities (Figure 4).
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Figure 3: Classification results: non-classified pixels are represented in the black color. Fragment 1
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Figure 4: Classification results: non-classified pixels are represented in the black color (Fragment 2)
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b) On the “Initial classification scheme
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