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Abstract

Automatic detection of oil spill and look-alikes in synthetic aperture radar (SAR) is required standard
procedures. In fact, oil spill and look-alike are appeared as dark patches in SAR data. This work utilizes a
modification of the formula of the fractal box counting dimension in which divided a convoluted line of slick
embedded in SAR data into small boxes. The method is based on the utilization of the probability distribution
formula in the fractal box count. The purpose of this method is to use it for the discrimination of oil spill areas
from the surrounding features e.g., sea surface and look-alikes in SAR data i.e., RADARSAT-1 SAR 52 mode
and AIRSAR/POLSAR data The results show that the modified formula of the fractal box counting dimension
is able to discriminate between oil spills and look-alike areas. The low wind area has the highest fractal
dimension peak of 2.9, as compared to the oil slick and the surrounding vough sea. Further, modified formula
of fractal box counting dimension is also able to detect look-alikes and low wind zome areas in
AIRSAR/POLSAR data. It is interesting to find out that oil spill is absent in AIRSAR/POLSAR data. Both SAR
data have maximum error standard deviation of 0.45 which performs with fractal dimension value of 2.9. In
conclusion, modification formula of fractal box counting dimension is promising method for oil spill

automatic detection in different sensor of SAR data.

1. Review Literature

The synthetic aperture radar (SAR) has been
recognized as a powerful tool for o1l spill detection.
Several algorithms have been introduced for the
automatic detection of oil spills in SAR images
(Bern et al., 1993, Benelli and Garzelli, 1998 and
Aiazzi et al., 2001). These algorithms have involved
three steps: (1) dark spot detection, (i) dark spot
feature extraction, and (iii) dark spot classifications.
Various classification algorithms for oil spill
detection have been utilized, including pattern
recognition algorithms (Fukunaga, 1990), spatial
frequency spectrum gradient (Lombardini et al.,
1989 and Trivero et al., 1998) and fuzzy and neural
networks techniques (Mohamed et al. 1999;
Calaberesi et al., 1999). Dark spot detection is done
by adaptive thresholding. This step is controlled by
wind conditions and the type of SAR sensors.
However, threshold procedures have failed to detect
thin and linear slicks. Available in—situ wind
measurements can be used to determine the
threshold while the local homogeneity can be used
to determine the threshold if there are no in-situ
wind measurements. In fact, oil spills detection
over SAR images is not at all an easy task. For one
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thing there are other physical phenomena apart from
oil slicks which can also generate dark patches and,
for another thing, SAR images are affected by
multiplicative noise known as speckle. In this
context, dark patches that are not due to oil spills are
described as look-alikes. They can be due to low
wind speed area, internal waves, biogenic films,
grease ice, wind front areas, areas sheltered by land,
rain cells, current shear zones, and up-welling zones
(Petromar, 1981, Lombardini et al., 1989, Trivero et
al., 1998 and Calaberesi et al., 1999). In this context
the power-to-mean ratio is considered as a good
measurement of texture homogeneity. Utilization of
sea surface homogeneity in a SAR image is a
function of wind speed conditions. For high or
medium wind speeds greater than about 3 m s the
sea water surrounding dark areas will appear fairly
homogenous. This explains the weak possibilities of
the presence of oil spill look-alikes in SAR scenes
under these conditions. However, with a low wind
speed of less than 3 ms' there could be a large
number of oil spill look-alikes presents in SAR
imagery (Trivero et al., 1998). The detection of oil
spill and look-alike features in SAR scenes can be
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obtained by using power-to-mean ratio values. The
power-to-mean ratio is used to adjust the threshold.
Various authors (Solberg and Solberg, 1996,
Solberg and Volden, 1997, Kanna et al., 2003 and
Nirchio et al., 2005) have reported that for
RADARSAT-1 SAR thresholding is done at three
different scales. However, using three different
scales did not work well for ENVISAT, due to the
larger pixel size of the selected product types. A
new approach has been introduced by Maged (2001)
to detect thin and linear slicks by using the Lee
algorithm (Touzi, 2002). The Lee Filter is primarily
used on radar data to remove high frequency speckle
without removing edges or sharp features in the
images. Maged and van Genderen (2001) reported
that the Lee algorithm operates well to determine
linear slick features. According to Maged (2001),
the Lee algorithm avoids decreasing resolution by
making a weighted combination of running average
which reduces the noise in the slick’s edge areas
without sacrificing edge sharpness. Recently, Huang
et al., (2005) explored the segmentation of oil slicks
using a partial differential equation (PDE)-based
level set method with ERS-2 SAR data. They
concluded that the level set method allows an
extraction of smooth and ideal boundaries rather
than a number of zigzag edges. However, this
method failed to distinguish between oil slicks and
dark spot areas that were located close to the
coastline due to low wind speed and were not oil
slicks. Tn fact this method produced automatic snake
contours around the presence of any dark spot areas
in SAR imagery. Furthermore, Maged and van
Genderen (2001) introduced a new approach by
using texture algorithms for the automatic detection
of oil spills in a RADARSAT-1 SAR image. In fact,
grey-tone  spatial-dependence or co-occurrence
matrices provide the basis for a number of measures
including range, variance, standard deviation,
entropy, or uniformity within a moving kernel
window (Tricot, 1993). This suggests that a large
part of the RADARSAT-1 swath could be useful for
oil slick detection. Recently, Ivanov et al., (2002)
reported that the RADARSAT-1 SAR, in its
ScanSAR Narrow mode with swath width that
exceeds 300 km, is an attractive tool for marine oil
pollution detection. They showed that the entire
ScanSAR image can be used for oil slick detection,
at least for suitable wind conditions. Further, the
standard 2 beam mode is C-band and has a lower
signal-to noise ratio due to its HH polarization with
wavelength of 5.6 cm and frequency of 5.3 GHz.
The RADARSAT-1 SAR standard 2 beam data has
spatial resolution of 12.5 m x12.5 m and the swath
area of 110 km x 100 km. The incidence angle is
between 23.7°and 31.0° (RADARSAT

International, 2006). However, computing the
texture features from a co-occurrence matrix may
become critical due to the multiplicative noise
impacts.  Different  approaches to  texture
identification have been introduced that involve
exploiting the fractal algorithm which can be
estimated from a specific multi-resolution
representation of the SAR images. Fractal analysis
provides tools for measuring how the geometric
complexity (the number of discrete objects,
perimeter to area ratios, and degree of spatial auto-
correlation) of imaged objects changes when the
image resolution is altered. The main question that
can be raised is how the fractal algorithm can be
used to discriminate between oil spills and look-
alikes in RADARSAT-1 SAR data. According to
Redondo (1996) fractal geometry can be used on
occasion to discriminate between different textures.
A fractal refers to entities, especially sets of pixels,
which display a degree of self-similarity at different
scales. Self-similarity is the foundation for fractal
analysis and is defined as a property of a curve or
surface where each part is indistinguishable from
the whole, or where the form of the curve or surface
is invariant with respect to scales, meaning that the
curve or surface is made of copies of itself at
reduced scale and enlarged scales (Pentland, 1984).
The most well known procedures that have been
proposed for estimating the fractal dimension of
SAR images are box counting, fractal Brownian
motion (Falconer, 1990, Gado and Redondo, 1999
and Benelli and Garzelli, 1999) and fractal
interpolation function system dimension of images
(Aiazzi et al., 2001). Initially, Falconer (1990)
introduced the fractional Brownian motion model
with SAR image intensity variation, which promises
in the SAR data textures. In fact, both the sea
surface and its backscattered signal in the SAR data
can be modeled as fractals (Wornell and
Oppenheim, 1992, Maragos and Sun, 1993, Benelli
and Garzelli, 1999 and Aiazzi et al., 2001). By
contrast, Gado and Redondo (1999) found that a box
counting fractal dimension model provided
excellent discrimination between oil spills and look-
alikes, although the backscatter information, which
could allow a first robust localization of the oil
spills, had not been considered. Furthermore,
Benelli and Garzelli (1999) used a multi-resolution
algorithm which was based on fractal geometry for
texture analysis. They found that the sea surface is
characterized by an approximately steady value of
fractal dimension, while the oil spills have a
different average fractal dimension compared to
look-alikes. This work has hypothesized that the
dark spot areas (oil slick or look-alike pixels) and
their  surrounding backscattered environmental
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signals in the SAR data can be modeled as fractals.
In this context, a box-counting fractal estimator can
be used as a semiautomatic tool to discriminate
between oil spills, look-alikes and surrounding sea
surface waters. In addition, the utilization of a
probability density formula in the box-counting
equation can improve the accuracy of discrimination
between oil slick pixels and surrounding feature
pixels such as ocean surface and look-alikes. The
procedures which have been used to discriminate oil
spills from the surrounding sea surface environment
are shown in Figure 1.
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Figure 1: Block diagram of fractal dimension
algorithm

2. Methodology

2.1 Data Set

SAR data acquired in this study were derived from
the RADARSAT-1 and AIRSAR/POLSAR images.
RADARSAT-1 SAR data that involve Standard
beam mode (S2) images. S2 data are C-band and
have a lower signal-to noise ratio due to their HH
polarization with a wavelength of 5.6 cm and a
frequency of 5.3 GHz. Further, S2 data have 3.1
looks and cover an incidence angle of 23.7°and
31.0° (RSI, 2006). In addition, S2 data cover a
swath width of 100 km. Both Mohamed et al.,
(1999) and Hashim et al., (2006) reported the
occurrence of oil spill pollution on 20 December
1999, along the coastal water of the Malacca Straits.
The Jet Propulsion Laboratory (JPL) airborne
Airborne Synthetic Aperture Radar (AIRSAR) data.
AIRSARIis a NASA/JPL multi-frequency instrument
package aboard a DC-8 aircraft and operated by
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NASA’s Ames Research Center at Moffett Field.
AIRSAR flies at 8 km over the average terrain
height at a velocity of 215 m s”'. The system is
designed to be flown on small and large aircraft.
The system requires a scanner port (18 cm x36 cm)
on the aircraft underside. JPL's airborne synthetic
aperture radar (AIRSAR) is a unique system,
comprising three radars at HH-, VV-, HV- and VH-
polarized signals from 5 m x 5 m pixels recorded
for three wavelengths: C band (5 ¢m), L. band (24
c¢cm) and P band (68 cm) (Zebker, 1992). AIRSAR
data collections are involved; fully polarimetric data
(POLSAR) can be collected at all three frequencies,
while cross-track interferometric data (TOPSAR)
and along-track interferometric (ATI) data can be
collected at C- and L-bands.

2.2 Fractal Algorithm for the Oil Spill Identification
The oil slick detection tool uses fractal algorithms to
detect  the  self-similar  characteristics  of
RADARSAT-1 SAR and AIRSAR/POLSAR data
intensity variations. A box-counting algorithm
introduced by Benelli and Garzelli (1999) was used
in this study. The box counting algorithm was used
to divide a convoluted line of slick which was
embedded in both SAR data plane (i,f), into smaller
boxes. This was done by dividing the initial length
of the convoluted line of the slick at backscatter

level S by the recurrence level of the iteration

(Gado and Redondo 1999). We define a decreasing
sequence of backscattering s tending from, the

largest value, to less than or equal to zero.
Following, Gado and Redondo (1999), the fractal
dimension D (g ) as a function of the

RADARSAT-1 SAR image intensity B, is given by:

. logM(B))
P(8) =Dy =lim 2

Equation 1

Where, 35y denotes the number of boxes which
are needed to cover the various slick areas with
different backscatter intensity /7, in both SAR data.

In addition, the subscript s indicates the backscatter
amplitude and its unit is 4B. The number of boxes
was non-overlapping which was calculated from the
fractal dimension algorithm and having a square

shape with side length / unit. This / is an odd,

positive integer centred on an arbitrary point in the
RADARSAT-1 SAR and AIRSAR/POLSAR

backscatter images ﬁs surface. Therefore, side

length was needed to cover a fractal profile, of
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backscatter image ", where D is the fractal

dimension that is to be estimated. Moreover, the box
numbers were chosen based on the length of
convoluted line of slick at backscatter level 4 . If the

profile being sampled is a fractal object, then ()
should be proportional to g, i.e., the following

relation, which was adopted from Milan er al
(1993), should be satisfied:

M(B)=Cp"
Equation 2

Where C is a positive constant derived from a linear

regression analysis between log M ( ) and log

(f,). For different box sizes were needed to cover

the length of convoluted line of slick at backscatter
level g, a number of points were produced in the

log-log plane. The dimension D ( ) =Djp can be

estimated from a linear regression of these points
(Milan et al., 1993). In practice it is difficult to
compute (g, )using equation (1) due to the discrete

RADARSAT-1 SAR and AIRSAR/POLSAR data
surfaces, and so approximations to this relationship
are employed. First, the RADARSAT-1 SAR and

AIRSAR/POLSAR intensity images / is treated as
matrix (#x ). This
j x g intensity image matrix has been divided into

a two-dimensional

non-overlapping or abutted windows of size/x [,
where / is the length of the convoluted line of the
slick in both SAR data(gx £). In addition for cach

window, there is a column of accumulated boxes,
each box with size of]?; x/. The backscatter values

(S, are stored at each intersection of the column i

and row j of the various slick areas. Then / is
calculated by using the differential box counting
proposed by Sarkar and Chaudhuri (1994).

57

Let the minimum and maximum (g )in the (i, j)

Equation 3

window fall in boxes numbered » and m . The total

number of boxes needed to cover the various slick
pixels in the RADARSAT-1 SAR image with the
box size 2, x7 is:

M(B) =2 n(fy)=m(B,)+]

Equation 4

Let pa(B.),1.1be the probability of the total number
of boxes pr(p jywith box sizes I .This probability

should be directly proportional to the number of

boxes spanned on the (j, j) windows.
zmﬁu)fnz(ﬂjyrl

By usin;c,I equation (4) the expected number of boxes
with size IA, which is needed to cover the slick

pixels can be calculated using the following
formula:

M) = XM ]
Equation 5

According to Fiscella et al., (2000), the probability
distribution of the dark area belonging to slick
pixels can be calculated using the formula below:

PIM(B N =[1+T1,q,(M(B)/ p,(M(B,))]
Equation 6

Let g and p are the probability

u=in([i,h,)—m([{)+l’
distribution functions for look-alike and oil spill
pixel areas, respectively. From equations (5), (6)
and (1) one can get a new formula for estimating the
fractal dimension Dy

log ¥ 0™ [1+11,, ¢, (M(£.))/ p,(M(B )]

DB =D, =li
PI=Pe=ity STow(7,)

Equation 7

Equation 7 represents the modification formula of
equation 1. In practice, the limit of M going to zero
cannot be taken as it does not produce a texture
image for oil spills or look-alikes in SAR data.
Using fractal dimensions to quantize texture for
segmentation, we may divide the slick’s pixel arcas
into overlapping sub-images. Each sub-image is
centre on the pixel of interest. We then estimate the
fractal dimension p(p ) within each sub-image, and

assign the fractal dimension value to the central
pixel of each sub-image. This will produce a texture
image that may be used as an additional feature in
slick pixel classification.

3. Results and Discussion

The new fractal formula was trained on three SAR
data, whereas the dark spots were identified and
examined.
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The RADARSAT-1 SAR S2 mode image contained
the confirmed oil spills that occurred 20 December
1999 (Samad and Shattri, 2002) (Figure 2a). S2
mode data covered an area located in between 101°
01'01.01"E to 101° 17" 11.5" E and 2° 25' 38.6" N
to 2° 34' 23.5" N The validation of new fractal
formula  was examined  on pairs of
AIRSAR/POLSAR data, which were acquired on 6
December 1996 from the coastline of Kuala
Terengganu, Malaysia between 103° 5' E to 103° 9
E and 5° 20' N to 5° 27' N. The POLSAR data was
acquired on 19 September 2000 from 5°11' N to 5°
12' N and 103> 12' E to 103° 13' E along the
southern of Kuala Terengganu, Merang port.
(Figures 2b and 2¢) (Hashim et al., 2006). Figure 3
shows the variation of the average backscatter
intensity along the azimuth direction in the oil-
covered areas as a function of incidence angles for
the S2 modes. The backscattered intensity was
damped -10 dB to -18 dB in S2 (Figure 3).
However, both AIRSAR/POLSAR data had higher
backscatter intensities as compared to S2 mode data
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(Figure 3). Further, S2 and AIRSAR/POLSAR data
backscatter intensities were well above noise floor
value of nominally —20 dB. In fact, RADARSAT-1
SAR is a C-band instrument with a variable
acquisition swath, presenting a large variety of
possible incidence angles, swath widths, and
resolutions (RADARSAT International, 2006). Oil
slicks can be detected with a contrast as small as 4
dB (Kotova et al., 1998, Farahiday et al., 1998, and
Lu et al., 2000). This suggests that a large part of the
RADARSAT-1 swath could be useful for oil slick
detection. Nevertheless, Ivanov et al., (2002)
reported that the RADARSAT-1 SAR, in its
ScanSAR Narrow mode with swath width above
300 km, was attractive for marine oil pollution
detection. The wind speed conditions acquired from
the Malaysian Meteorological Survey Department
showed a maximum offshore wind velocity of 4 m/s
during the AIRSAR/POLSAR data overpass and 6.4
and the acquisition of S2 mode data, respectively
(Figure 3).
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Figure 2: Suspected oil spill in (a) RADARSAT-1 SAR S2 mode data and loo-alikes at

{b) ATRSAR data and (¢) POLSAR data
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Figure 3: Radar cross section intensity along dark
spots in SAR data

In addition, the oil spill in the S2 mode with
shallower incidence angle was between 23° and 27°
(Figure 3), whereas in the AIRSAR/POLSAR data
the dark spots were imaged by steeper incidence
angles between 40° and 60° (Figure 3). According
to Maged and Mazlan (2003), steeper incidence
angles are preferred for oil spill detection, since they
tend to maximise the signal from the ocean surface.
Our results of backscatter variations across oil spill
locations agreed with the study of Maged and
Mazlan (2005). The proposed method to estimate
the fractal dimension was applied to the amplitude
RADARSAT-1 SAR data, by using a 10 x 10 block
(Figure 4).

The fractal dimension maps showed a good
discrimination between different textures on the
RADARSAT-1 SAR image and correlated well with
image texture regions. This could be clearly noticed
at area (H) where the ship and wake were well
identified (Figure 4). The oil spill pixels were
dominated by lower fractal values than look-alikes
and surrounding environment (Figure 4a). In Figure
4a, the fractal values of oil spill regions varied
between 1.49 and 2. According to Maged and
Mazlan (2005), the oil spill becomes thinner when
the fractal dimension value increases. This could be
noticed in areas A to C. In AIRSAR/POLSAR,
however, oil spill is absent (Figures 4b and 4c¢). In
fact, a thick oil spill dampens the small-scale waves
and therefore there is no Bragg resonance, which
reduces the roughness of sea surface as compared to
a thin oil spill (Bern et al., 1993). In this context, the
fractal dimension is a function of sea surface level
intensities over the RADARSAT-1 SAR images,
which express the self-similarity (Benelli and
Garzelli, 1999). Tn contrast to the S2 mode data, the
fractal dimension values of look-alikes in
AIRSAR/POLSAR data were higher. In the
AIRSAR/POLSAR, areas F and E represented the
occurrence of look-alikes. Table 1 shows that areas
E and F in the POLSAR data corresponded to fractal
dimension values 2.6 and 2.8, respectively, whereas
area E corresponded to a fractal dimension equal to
2.6 in S2 mode data.

Table 1: Fractal values for different features in RADARSAT-1 Standard (S2) mode
and POLSAR/ATRSAR data

AIRSAR/POLSAR RADARSAT-1 SAR (S2)
Area Fractal dimension Area Fractal dimension
Qil Spill Oil Spill
A Not exist A 1.49
B B 1.52
C C 2.00
Look-alike Look —alike
D - D 2.4
E 2.6 E 2.6
F 2.8 F 3.0
Ship ship
G 4.0 G 4.0
H 3.6 H 2.4
| - | 3.9
Shear Current Shear Current
J Not exist J 3.8
K K 3.9
L L 3.9
Low wind zone Low wind zone
M 1.56 M 1.57
N 2.21 N 2.00
(0] 2.52 (0] 2.48
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Figures 4a and 4c show the highest fractal
dimension values of 3.9 and 4.0 in arcas I and G,
respectively, were represented by the presence of a
ship, whereas ship waves had a lower fractal
dimension values, between 2.4 and 3.6 in area H in
ATRSAR/POLSAR and S2 mode data, respectively
(Table 1). Furthermore, the occurrence of shear
current flow could be seen in areas J, K and L,
respectively in S2 mode data (Figure 4a). It was
interesting to find that the fractal dimension
algorithm-based probability was able to extract ship
wake information in area H with a value of 3.9
(Figure 4a). This suggests that the corresponding
value of fractal dimension for different categories
allows a multi-fractal characterisation of different
features in different SAR data. These results
confirmed the study of Maged and Mazlan (2005).
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Figure 5: ROC Curve for different feature
detection in SAR data

The fractal dimension values of look-alikes and
ships and shown in Figures 4a, 4b and 4c were
approximately similar. The receiver-operator-
characteristics (ROC) Curve in Figure 5 indicates
significant differences in the discrimination between
oil spill, look-alikes and sea surface roughness
pixels. Tn terms of ROC area, this evidence was
provided by an area difference of 15% for oil spill
and 45% for the sea roughness and a p value below
0.005, which confirms the study of Maged and
Mazlan (2005). In fact, the fractal dimension could
be viewed as a measure of the scale of the self-
similarity of the object. Also, the interference was
statistically similar if the scale was reduced, similar
to the result of Bertacca et al., (2005). This suggsts
that a fractal analysis is a good method to
discriminate regions of oil slick from surrounding
water features. Figure 6 shows an exponential
relationship between fractal dimension and the
standard deviation of the estimation error for the
fractal dimension. The maximum error standard

Error standard deviation

In AIRSAR/POLSAR and S2 mode data, it could
further be seen that low wind zones in areas M, N
and O occurred close to the coastline, with
maximum fractal values equal to 2.33, 2.34 and 2.5,
respectively (Figure 6). Look-alikes occupied
narrow areas parallel to the coastline (Figure 6). The
wide distribution of dark zone pixels represented the
natural slick in low wind areas (Henschel et al.,
1997), which was aligned with what could be a
current shear or convergence zone. This could be
seen clearly in S1 mode data (Figure 6a). Thus, the
fractal algorithm was able to discriminate the look-
alike features from the surrounding sea surface
features such as current shear (Figure 6a). Figure 6b
illustrates, however, larger areas of look-alikes as
compared to Figure 6a.
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AIRSAR/POLSAR

0.45
0.4 - 52
035
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0.25
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2 25 3
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Figure 6: Accuracy assessment of fractal
dimension performance

deviation was 0.27, corresponding to the fractal
dimension value of 2.9, which was found in S2
mode data. For oil spill detection, the minimum
error standard deviation of 0.02 occurred in a region
of fractal dimension of 1.49 in S2 mode data. For
ATRSAR/POLSAR data, the maximum error
standard deviation is 0.4 which corresponds to the
fractal dimension value of 2.8. This means that the
S2 mode performed better for detection of oil spills.
In fact, the S2 mode showed a shallower incident
angle than AIRSAR/POLSAR data. Wind speeds
below 6 m/s are appropriate for detection of oil
spills in SAR data (Solberg and Volden, 1997).
Therefore, for applications that require imaging of
the ocean surface, steep incidence angles are
preferable as there is a greater contrast of
backscatter manifested at the ocean surface. A good
discrimination between oil spill, look-alike, low
wind zone and sea surface roughness exists when
the error standard deviation 1s between 0.002 and
0.45, as produced by implementation of the fractal
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modified formula. The reason is that the fractal
dimension is a measure of the scale of the self-
similarity of the object. The low standard deviation
error value of 0.002 for fractal areas of 1.49
dominate by the oil spill was lower than that for the
surrounding sea. This is an excellent indicator for
the validation of the fractal formula modification by
implementing a probability distribution function
(PDF). The fractal dimension based on the
probability distribution function (PDF) improves the
discrimination between oil spill, look-alikes, sea
roughness and low wind zones. In fact, involving
the PDF formula in the fractal dimension map
directly relates the textures at different scales to the
fractal dimension. Such a modification of the fractal
equation reduces the problems of speckle and sea
clutter and assists in the accurate classification of
different textures for SAR images. Previous studies
were concerned with automatic detection of oil
spills from SAR images, which is based on dark
spot feature extraction and classification (Solberg
and Solberg, 1996, Solberg and Volden, 1997,
Benelli and Garzelli, 1999, Mohamed et al., 1999,
Samad and Shattri, 2002 and Maged and Mazlan,
2005). In contrast to the present study, those studies
failed to detect the oil spill spreading and to
discriminate between the current shear features, ship
pixels, sea surface roughness and oil spill pixels by
using different segmentation algorithms (Solberg
and Solberg, 1996, Solberg and Volden, 1997,
Mohamed et al., 1999 and Samad and Shattri, 2002)
or the classical fractal formula (Benelli and Garzelli,
1999 and Maged and Mazlan, 2005). Indeed, the
different oil spill segmentation approaches, in terms
of accuracy of classification of oil spills and features
of the surrounding sca, are a challenging task; the
modification of the algorithms used for automatic
detection of oil spills might be required to improve
the analyses.

4. Conclusion

The utilization of multi SAR imagery for oil slick
detection has been implemented by using a fractal
dimension algorithm as an automatic tool to
discriminate between an oil slick and other surface
features such as slick look-alikes and variability of
surface roughness. The oil spill has characteristic
values of fractal dimension, which ranged between
1.49 and 2.0. The sea surface roughness has a steady
value of fractal dimension which is 2.6. The
interesting result is that the low wind area was
characterised by the highest value of fractal
dimension which is 2.48. In AIRSAR/POLSAR
data, the look-alike due to natural slick has
characteristic values of fractal dimension, which
ranged between 1.6 and 2.0. The sea surface
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roughness has a steady value of fractal dimension
which is 2.4. The interesting result is that the ship
pixels were characterised by the highest value of
fractal dimension which is 3.9. The maximum error
standard deviation of 0.45 which performs with
fractal dimension value of 2.9 is found in both SAR
data. It can be said that the new approach of the
fractal box counting dimension algorithm can be
used as an automatic tool for oil spill, and look-alike
detections in different sensor of SAR data.
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