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Abstract

Bangalore is experiencing unprecedented urbanisation in recent times due to concentrated developmental
activities with impetus on IT (Information Technology) and BT (Biotechnology) sectors. The concentrated
developmental activities has resulted in the increase in population and consequent pressure on infrastructure,
natural vesources, ultimately giving rise to a plethora of serious challenges such as urban flooding, climate
change, etc. One of the perceived impact at local levels is the increase in sensible heat flux from the land
surface to the atmosphere, which is also referred as heat island effect. In this communication, we report the
changes in land surface temperature (LST) with respect to land cover changes during 1973 to 2007. A novel
technique combining the information from sub-pixel class proportions with information from classified image
(using signatures of the respective classes collected from the ground) has been used to achieve more reliable
classification. The analysis showed positive correlation with the increase in paved surfaces and LST. 466%
increase in paved surfaces (buildings, roads, etc.) has lead to the increase in LST by about 2 °C during the
last 2 decades, confirming urban heat island phenomenon. LSTs’ were velatively lower (~ 4 to 7 °C) at land

uses such as vegetation (parks/forests) and water bodies which act as heat sinks.

1. Introduction

Many cities in developing countries are now
undergoing rapid urbanisation evident from the
increase in urban population from 13% (220
million) in 1900, to 29% (732 million) in 1950, to
49% (3.2 billion) in 2005 and is projected to rise to
60% (4.9 billion) by 2030 (WUP, 2005). Accurate
and timely information in land use (LU) and LU
changes is crucial for long-term economic
development planning and also for short-term land
management. Increase in paved land covers (LC)
consequent to the concentrated human activities
often leads to increased land surface temperatures
(LST). Enhanced LST in certain urban pockets
compared to its immediate surroundings consequent
to the increase in paved surfaces is known as urban
heat island (UHI) phenomenon (Landsbeg, 1981).
Specifically, surface and atmospheric temperatures
are increased by anthropogenic heat discharge due
to energy consumption, increased land surface
coverage by artificial materials having high heat
capacities and conductivities, and the associated
decreases in vegetation and water impervious
surfaces, which reduce surface temperature through
evapotranspiration (Kato and Yamaguchi, 2005).
Temperatures have been monitored through space

borne remote sensing (RS) sensors, which measure
top of the atmosphere (TOA) radiances in the
Thermal Infrared (TIR) region. TOA radiance is the
net result of emitted radiance from the Earth’s
surface, upwelling radiance from the atmosphere,
and downwelling radiance from the sky. Brightness
temperatures  (also  known as  blackbody
temperatures) can be derived from the TOA
radiance (Dash et al, 2002). These brightness
temperatures are further corrected with spectral
emissivity values prior to the computation of LST to
account for the roughness properties of the land
surface, the amount and nature of vegetation cover,
and the thermal properties and moisture content of
the soil (Friedl, 2002). However, lack of knowledge
of emissivity can introduce an error ranging from
0.2 to 1.2 K for mid-latitude summers and from 0.8
to 1.4 K for the winter conditions for an emissivity
of 0.98 and at the ground height of 0 km (Dash et
al., 2002). Two approaches have been developed to
recover LST from multispectral TIR imagery
(Schmugge et al., 1998). The first approach utilises
a radiative transfer equation to correct the at-sensor
radiance to surface radiance, followed by an
emissivity model to separate the surface radiance
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into temperature and emissivity (Friedl, 2002). The
second approach applies the split-window technique
for sea surfaces to land surfaces, assuming that the
emissivity in the channels used for the split window
is similar (Dash et al., 2002). TIR region
corresponding to 8 -14 um in the electromagnetic
spectrum is being used in quantifying the thermal
urban environment (as per Wien’s displacement
law) as well as mapping heat islands in the urban
areas. Currently available RS data pertaining to
visible, near infrared (NIR) and thermal range in
different spatial resolution and temporal coverage
are used for LU/LC classification and LST
estimations. Spatial resolution of the data plays an
important role in classification scheme and studies
have been carried out to understand the role of
various resolutions for LU classification. Multi-
sensor RS data were analysed for terrain cover
classification over the Greater Sydney region by
Forghani et al., (2007). National terrain surface
roughness was generated, using MODIS (Level 1-
areas with no major towns), Landsat/ ASTER/SPOT
2/4 (Level 2-areas with major towns), SPOT-5
(Level 3-areas with capital/major cities), and
IKONOS/QuickBird (Level 4-areas containing
significant critical infrastructure). The study
highlights that Landsat TM/ETM+ imagery is suited
for derivation of 30 m and 100 m resolution terrain
maps. UHIT was investigated earlier through LST
measurements using NOAA AVHRR data (Li et al.,
2004, Balling and Brazell, 1988, Gallo et al., 1993,
Gallo and Owen, 1998 and Kidder and Wu, 1987),
TM TIR data (Carnahan and Larson, 1990), Landsat
TM data (Tanaka et al., 2005), ASTER and ETM+
data (Kato and Yamaguchi, 2005), Landsat-5 TM
and Landsat-7 ETM+ data (Nikolakopoulos et al.,
2003, Stathopoulou and Cartalis, 2007 and Weng et
al.,, 2004), Corine LC with Landsat ETM+ data
{Stathopoulou and Cartalis, 2007). However, there
are no studies to understand the LST with LU
dynamics in a rapidly urbanising region such as
Greater Bangalore. Hence, the objective of this
study is to investigate the LST with LU dynamics to
understand the urban heat island phenomenon in
Greater Bangalore considering multi - senor, multi -
resolution and temporal RS data acquired through
space borne sensors. This involved:
i) Temporal LU change analysis (during 1973 to
2007);
it) Computation of LST and NDVI (Normalized
Difference Vegetation Index) from Landsat TM
(1992) and MODIS data (2000 and 2007) of
summer month;
iii) Investigation of the role of NDVI in LST;
iv) Deriving sub-pixel proportion of LU using linear
mixture model (LMM) on bands of ETM+

(excluding thermal and panchromatic) and
investigate its relationship with LST;

v) Deriving improved supervised classified LC map
through Bayesian classifier using abundance
values obtained from LMM as a prior probability
along with information from classified map
obtained using spectral signatures (training
polygons).

2. Data and Methods

2.1Data

Data used in the study are Landsat MSS (1973), TM
(1992), IRS LISS-IIT MSS (1999), Landsat ETM+
(2000), IRS LISS-TII (2006), MODIS 7 bands
reflectance product (2002, 2007), MODIS Land
Surface Temperature/Emissivity (V004 and V005):
8-Day, L3 Global lkm products (2000, 2007) and
Google Earth (http://carth.google.com).

2.2 Study Avea

Greater Bangalore is the principal administrative,
cultural, commercial, industrial, and knowledge
capital of the state of Karnataka with an area of 741
km® and lies between the latitudes 12°39°00” to

13°1300” N and longitude 77°22'00" to 77°52'00”

E. Bangalore city administrative jurisdiction was
widened in 2006 by merging the existing area of
Bangalore city spatial limits with 8 neighboring
Urban Local Bodies (ULBs) and 111 Villages of
Bangalore Urban District. Thus, Bangalore has
grown spatially more than ten times since 1949 (69
km®). Now, Bangalore (Figure 1) is the fifth largest
metropolis in India currently with a population of
about 7 million (Ramachandra and Kumar, 2008).
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Figure 1: Study area — Greater Bangalore, India
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2.3 Methods

2.3.1 Land use analysis

This was done with Landsat data of 1973 (79 m
spatial resolution), 1992 and 2000 (30 m), IRS
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LISS-IIT data of 1999 and 2006 (23.5 m) and
MODIS data of 2002 and 2007 (250 m to 500 m
spatial  resolution) using supervised pattern
classifiers based on Gaussian maximum likelihood
(GML) estimation followed by a Bayesian statistical
approach. This technique quantifies the tradeoffs
between various classification decisions using
probability and costs that accompany such decisions
(Duda et al., 2000). 1t makes assumptions that the
decision problem is posed in probabilistic terms, and
that all of the relevant probability values are known
with a number of design samples or training data
collected from field that are particular
representatives of the patterns to be classified. The
mean and covariance are computed using maximum
likelihood estimation with the best estimates that
maximises the probability of the pixels falling into
one of the classes. LU analysis considering temporal
data (1973, 1992, 1999, 2000, 2002, 2006 and 2007)
was done using the open source programs (i.gensig,
i.class and i.maxlik) of Geographic Resources
Analysis Support System
(http://wgbis.ces.lisc.ernet.in/grass).

2.3.2 Change defection

LU change detection is performed by change/no-
change recognition followed by boundary
delineation on images of two different time periods.
Pixels which show significant changes are checked
and validated on the ground and the boundaries of
the changed patches are category wise delineated.
This is supplemented with visual interpretation and
onling digitisation. Many LU change detection
techniques have been developed, but no single
algorithm is suitable for all cases (Lu et al., 2004),
as the implementation of change detection analysis
is dependent on the data itself (Zhang and Zhang,
2007). Bi-temporal multispectral images have been
analysed to understand LU dynamics through:

o Principal Component Analysis (PCA) — PCA has
been an effective tool for change detection (Fung
and LeDrew, 1987 and Michener and Houhoulis,
1997). Major components of the time two (t,) data
are subtracted from the corresponding components
of the time one () data to obtain differences
related to changes in LU. This method provides a
better result than simple image differencing when
the radiometric differences between the two
images are too large due to different imaging
circumstances and cannot be effectively dealt with
by the radiometric normalisation process (Zhang
and Zhang, 2007). Landsat MSS (1973) and IRS
LISS-IIT  (2006) scenes having  different
radiometry were used with PCA to understand the
overall changes across a period of 33 years.
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o Tasseled Cap (TC) or Kauth-Thomas (KT)
transformation — Here, multi-temporal TM and
ETM+ data are transformed into the brightness-
greenness-wetness space, then changed areas are
generated by differencing the brightness (AB) and
greenness (AG) values (Kauth and Thomas, 1976).
Changes in brightness (AB) are associated with
most LU changes, especially constructed related
changes. TC results can be physically interpreted
as its coefficients are predetermined and
independent of each image scene, while PCA
coefficients are not. However, for the purpose of
simply detecting change/no-change areas, PCA 1is
better than TC in many cases, although the
physical  interpretation is  difficult. = TC
transformations were performed on Landsat TM
(1992) and ETM+ (2000) data.

o Image Differencing (ID) — ID is effective for
identifying LU changes from visible and NIR
band pairs acquired in similar circumstances
(imaging conditions) using same sensor over two
different time periods (Macleod and Congalton,
1998). IRS LISS-IIT (1999 and 2006) data were
used to visualise the LU changes through ID.

2.3.3 Derivation of LST from Landsat TM and
Landsat ETM+

LST were computed (Weng et al., 2004) from TIR
bands (Landsat TM and ETM+). Emissivity
correction for the specified LC is carried out using
surface emissivities as per Synder et al., (1998);
Stathopoplou et al., (2007) and Landsat 7 science
data user’s handbook (2008). The emmissivity
corrected land surface temperature (Ts) are
computed as per Artis and Carnahan (1982)

r- I
f I+ (AxT,/ p)ne
Equation 1

Where, X is the wavelength of emitted radiance for
which the peak response and the average of the
limiting wavelengths (. = 11.5 pm) (Markham and
Barker, 1985) were used, p = h x ¢/c (1.438 x 107
mK), 6 = Stefan Bolzmann’s constant (5.67 x 10™
Wm?K™" = 1.38 x 10 J/K), h = Planck’s constant
(6.626 x 107" Jsec), ¢ = velocity of light (2.998 x
10®* m/sec), and ¢ is spectral emissivity.

2.3.4 LST from MODIS

MODIS LST/Emissivity 16-bit unsigned integer
data with 1 km spatial resolution are multiplied by a
scale factor of 0.02 (http://lpdaac.usgs.gov/modis-
/dataproducts.asp#modll) and are converted to
degree Celsius.
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2.3.5 NDVI from Landsat TM, ETM+ and MODIS
NDVI was computed using visible Red (0.63 — 0.69
pm) and NIR (0.76 — 0.90 pm) bands of Landsat
TM (1992)ETM+ (2000) and Red (0.62 — 0.68
microns) and NIR (0.77 — 0.86 microns) bands of
LISS-III data of 2006.

2.3.6 Estimation of abundance maps

Linear unmixing method was adopted for solving
the mixed pixel problem as the spectral radiance
measured by a sensor consists of the mixture of
radiances reflected in proportion to the sub-pixel
area covered (Kumar et al., 2008). Endmembers
corresponding to pure pixels are given by the
reference spectra of each of the individual pure
materials. Spectra corresponding to sub-pixel areas
in a pixel are assumed to be linearly independent,
and the target pixel spectra are a combination of
these spectra (which is proportional to respective
LC in a pixel). The spectrum measured by a sensor
is a linear combination of the spectra, therefore,

Yi = Z(ayxj)+ e;
=1
Equation 2

where n = the number of distinct LU classes; y; =
Spectral reflectance of respective pixels in a band,
a; = Spectral reflectance of the J™ component in the
pixel for i spectral band; x; = Proportion value of
the j* component in the pixel; j = 1, 2, 3 .. n
(mumber of land classes assumed); i=1,2,3 .. m
(mumber of multispectral bands) and e; = error term
for the i spectral band. The error term (e;) is due to
the assumption made that the response of each pixel
in any spectral wavelength is a linear combination
of the proportional responses of each component.
Assuming that the error term is 0, equation 2 can be
written as:

AX=Y
Equation 3

where A is a m x n matrix (a;(, 212, ..., aun), X i1Sa R
x | vector (x|, x3, ..., x,) and Y is a n x | vector (yy,

V2, ..., Vo) Written as:
ay e dy || 5 0y
Ay Gy e Oy, | K| (D
aml am2 haid anm xn y,,

Equation 4
(A=1"(4"4) "' 4'Y))

T g\ 4T
X comtained = (A" A) TATY + 17‘(A7‘A)7|

AT A

Equation 5

Equation 5 gives the Constrained Least Squares
(CLS) estimate of the abundance expressed in terms
of matrix A, X and Y. The reflected spectrum of a
pure feature is called a reference or endmember
spectrum. Endmembers are extracted using scatter
plot or through automatic endmember extraction
techniques (Kumar et al., 2008).

2.3.7 LC derivation from abundance values along
with training polvgons using Bayesian
classification

Abundances of each category (pixel wise) are used

as a prior probability of the class. In the Baye's

classifier for the multispectral data, the posterior
probability of the class given the observation is
computed by multiplying the prior probability of the
class with the conditional probability P(x|k), where

x denotes the multispectral observation vector and k

any class. The class label assigned to the pixel is:

P(k|i, )P(x] k)
I=agmin——, 5

Equation 6

3. Results

Temporal LU details are displayed in figure 2 and
class statistics are listed in table 1. The classified
images of 1973, 1992, 1999, 2000, 2002, 2006 and
2007 showed an overall accuracy of 72%, 75%,
1%, 77%, 60%, 73% and 55%. Accuracy
assessment was performed which showed higher
accuracy for high resolution data (~ 70-75% for
Landsat and IRS LISS-ITT) and decreasing accuracy
with coarse spatial resolution (~ 55-60% for
MODIS). Figure 3 (a) — (f) depicts the LU change
based on differencing techniques of PCA and TC.
The disappearance of water bodies from 1973 to
2006 is given in Figure 4. 55% decline (from 207 to
93) in the number of water bodies and 61% decline
in the spatial extent (of water bodies) is noticed
from the temporal analysis. Validation was done
considering training data and Google Earth image,
covering approximately 15% of the study area.
Then, pixels corresponding to urban category were
extracted for further analysis. Figure 5 shows the
LST and NDVI of Greater Bangalore in 1992, 2000
and 2007. The minimum (min) and maximum (max)
temperature was 12 °C and 21 °C with a mean of
16.542.5 from Landsat TM (1992, winter). Similarly
MODIS data of 2000 (summer) show the min, max
and mean temperature of 20.23, 28.29 and
23.7141.26 °C respectively. Corresponding values
for 2007 (summer) are 23.79, 34.29 with a mean of
28.86x1.60 °C. LC wise NDVI and LST are listed in
table 2.
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Figure 3: PC1 of Landsat MSS-1973 (a), PC1 of IRS LISS-IT1-2006 (b) and the change in LU is highlighted in
(¢) using PCA differencing method. The highlighted box in (a) and (b) are further enlarged in (d) to (f).
Brightness values from TC transformation on Landsat TM-1992 (d) and ETM+2000 (¢). The changes are
highlighted in (f) by differencing the brightness values emphasizing new built up

Table 1: Greater Bangalore land cover statistics

Class > Built up Vegetation Water Others
Year \V Bodies
1973 Ha 5448 46639 2324 13903
% 7.97 68.27 3.40 20.35
1992 Ha 18650 31579 1790 16303
% 27.30 46.22 2.60 23.86
1999 Ha 23532 31421 1574 11794
% 34.44 45.99 2.30 17.26
2000 Ha 24163 31272 1542 11346
% 35.37 45.77 2.26 16.61
2002 Ha 26992 28959 1218 11153
% 39.51 42.39 1.80 16.32
2006 Ha 29535 19696 1073 18017
% 43.23 28.83 1.57 26.37
2007 Ha 30876 17298 1005 19143
% 45.19 25.32 1.47 28.01
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Figure 4: Temporal changes in water bodies from 1973 (using Landsat MSS) to 2006
(using IRS LISS-III) highlighted in rectangular boxes and circles.

Figure 5: LST from Landsat TM (1992), MODIS (2000 and 2007), NDVT from Landsat TM (1992),
Landsat ETM+ (2000) and TRS LISS-TIT (2006)

Table 2: NDVI and LST (°C) for respective land uses

Land cover 1992 (TM) 2000 (MODIS) 2007 (MODIS)
Mean LST Mean Mean LST Mean Mean LST Mean NDVI
(SD) NDVI (SD) NDVI (SD) (SD)
(SD) (SD)

Builtup 19.03 -0.162 26.57 -0.614 31.24 -0.607
(1.47) (0.096) (1.25) (0.359) (2.21) (0.261)

Vegetation 15.51 0.467 22.21 0.626 25.29 0.348
(1.05) (0.201) (1.49) (0.27) (0.44) (0.42)

‘Water bodies 12.82 -0.954 21.27 -0.881 24.00 -0. 81
(0.62) (0.055) (1.03) (0.045) (0.27) (0.27)

Open ground 17.66 -0.106 24.73 -0.016 28.85 -0.097
(2.46) (0.281) (1.56) (0.283) (1.54) (0.18)
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The relationship between LST and NDVI were
investigated for each LC type through the Pearson’s
correlation coefficient (CC) at a pixel level, which
are listed in table 3. It is apparent that values tend to
negatively correlate with NDVI for all LC types.
NDVI values ranges from -0.05 to -0.6 (built up)
and 0.15 to 0.6 (vegetation). Temporal increase in
temperature with the increase in the number of
urban pixels is noticed during 1992 to 2007 (63%)
and ‘r’ confirms this relationship for the respective
years. The decrease in vegetation is retlected by the
respective increase in temperature. Further analysis
is done by considering vegetation abundance.
Landsat ETM+ (band 1, 2, 3, 4, 5 and 7) were
unmixed to get the abundance maps of 5 classes (1)
dense urban (commercial/industrial/residential), (2)
mixed urban (urban with vegetation and open
ground), (3) vegetation, (4) open ground and (5)
water bodies. We considered only dense urban,
mixed urban and vegetation abundance for further

IHENSE UREBAN

YEGFT Yo

analysis as shown in figure 6. The min and max
temperature from ETM+ data was 13.49 and 26.32
°C with a mean of 21.75£2.3. These abundance
images were further analysed to see their
contribution to the UHI by separating the pixels that
contains 0-20%, 20-40%, 40-60%, 60-80% and 80-
100% of the commercial/industrial/residential
(dense urban), mixed urban and vegetation. Table 4
gives the mean and standard deviation (SD) of the
LST for various LU. Application of decision based
unmixing approach, systematically exploited the
information from both the sources (sub-pixel class
proportions and classified image based on training
data collected from the ground) for achieving more
reliable classification, shown in figure 7. Table 5
lists LC wise LST, NDVI and correlation
coefficient. Relationship of population density with
LST (Landsat ETM+) is evident in figure §, which
corroborate that the increase in LST is due to
urbanisation and consequent increase in population.
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Figure 6: Abundance maps and LST obtained from Landsat ETM+ data (2000)

Table 3: Correlation coefficients between LST and NDVI by LC type (significant at 0.05 level)

LU 1992 2000 2007

Builtup -0.7188 -0.7745 -0.7900
Vegetation -0.8720 -0.6211 -0.6071
Open ground -0.6817 -0.5837 -0.6004
Water bodies -0.4152 -0.4182 -0.4999
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Table 4: Mean LST for different LC classes for various abundances

Class > Mean Temperature £ SD Mean Temperature+ SD Mean Temperature+ SD
Abundance ¥ of dense urban of mixed urban of vegetation
0-20% 21.99+£2.37 21.57£2.36 17.91£2.19
20-40% 22.06£2.15 21.58+2.36 17.39£1.37
40-60% 22.27+2.00 21.67+2.41 17.22+0.89
60-80% 22.33+2.22 22.28+2.02 17.13+£0.85
80-100% 22.47£1.96 22.374£2.17 17.12+0.91
- Pr
. y= 18 964x0.02%5
17 - 2 | r=0572+
-
4
-
= 2z
i
g
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Figure 7: Classified image obtained from combining
unmixed images and classified image using spectral
signatures from ground as input to Baye’s classifier
from 6 MSS bands of Landsat ETM+

00 1000

Papulation density (per ha)

1200 1400

Figure 8: LST with ward wise population
density

Table 5: LST, NDVI and correlation coefficient for different LC classes

Landuse LST NDVI Correlation coefficient between
Mean + SD Mean £SD LST and NDVI
Dense builtup 23.09+ 1.16 -0.2904+ 0.395 -0.7771
Mixed builtup 2214+ 1.06 -0.138+ 0.539 -0.6834
Vegetation 19.27+1.59 0.3969+ 0.404 -0.8500
Open Ground 22.40+1.97 -0.0193+0.164 -0.6319
Water Bodies 19.57+ 1.72 -0.301+£0.47 0.2319

Table 6: MMU sizes for different RS data sources used

Data source

MODIS

Landsat MSS

Landsat TM/ETM+

IRS LISS-ITT

MMU (ha) 6.25

0.62

0.09 0.055

4. Discussion

The analysis showed that there has been a 466%
increase in built up area from 1973 to 2007 as
evident from temporal analysis leading to a sharp
decline of 61% area in water bodies. LU changes
were more prominent in the city during the last 2
decades  consequent to rapid urbanisation
accompanied with urban sprawl with IT
(Information Technology) and BT (Biotechnology)
boom and consequent migration of people from

different regions. Tdentification of the changed
patches or specific region that underwent changes
{from one LU to other) is not easily achievable in a
highly dynamic and large urbanising environment
considering the varying range of spatial resolutions
(23.5 to 250 m) across time (1973 to 2007). This
requires the development and maintenance of
database for each LU across a large time-scale
{Zhang and Zhang, 2007).
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A newly constructed flyover or road (for example
see a new road in Figure 3 (e) running from south to
north highlighted in a rectangular box in the second
half of the image), was detected as a broken line in
figure 3 (f) due to shadow or getting merged with
other classes (mixed pixels), etc. This was obtained
by differencing TC transformed 92 and 2000
brightness values and the changed patches were
identified using Region Growing Method (RGM)
along with thresholding. The exact delineation of
the boundary for every recognised change patch also
depends on the minimum mapping unit (MMU) and
its proper selection (Zhang and Zhang, 2007). Large
MMU changes result in significant differences in
the accuracy estimates of LC classification. They
make change detection more accurate but often miss
real and small LU changes. A small MMU present
detailed LU changes but also increase the
uncertainty of the RS derived change product.
MMU for various pixel sizes are listed in table 6.
The minimum built up size in residential areas is ~
0.011 ha to 0.037 ha and often extend up to 1 ha (in
case of multi-storied buildings) while industrial
buildings can spread from 50 to 150 ha
approximately. One way to delineate such features
is to perform interactive on-screen editing along
with visual interpretation in a synergistic way.
MODIS and Landsat MSS present significant
challenge due to mixed pixel problems. Landsat
TM/ETM+ and IRS LISS-III are adequate for
detecting pixel patch changes, yet most of the
objects fall on boundaries of two adjacent pixels and
they are smaller than the MMU size (form mixed
pixels). Hence, these data tend to overestimate the
LU classes. The area derived from RS data is closer
to the area on the ground when patch size increases.
However, area measurements from high spatial
resolution were more accurate. The correlation (r)
between NDVI and temperature of 1992 (based on
TM data) was 0.88. Similarly for 2000, r was 0.72
(MODIS 2000) and 0.65 (MODIS 2007)
respectively. Analysis of LST with NDVI suggests
that the extent of LC with vegetation plays a
significant role in the regional LST. Although many
factors can contribute to the variations of LST, the
spatial arrangement and aerial extent of various LU
types is a fundamental one. Within the city, if we
consider the LU nature, then we see that
temperature falls from densely builtup area to
medium builtup area and again from medium
builtup to vegetative land. The temperature close to
vegetation and wetlands were lower by 4 and 5-7 °C
respectively (see table 2). This highlights that LU
characteristics play a significant role in maintaining
the ambient temperature and also in the regional
heat island phenomenon. Vegetation and water
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bodies are negatively correlated with temperature
suggesting that these LU aid as heat sinks and hence
maintains salubrious regional climate. Accuracy of
the unmixing decision based approach considering
information from sub-pixel class proportions and
classified map obtained using training data was
85.46%. This approach is apt for fusing the
information obtained from multi-sensors (such as
MODIS and 1RS). MODIS based sub-pixel
information obtained from one of the unmixing
techniques can be fused with IRS LISS-IIT MSS
classified information. The endmembers for MODIS
data unmixing can be extracted from the image itself
(Kumar et al., 2008), while IRS LISS-TIT MSS
classification is done with the training data. This
technique would be helpful in optimising the
benefits of higher spectral and spatial resolutions of
multi-sensors. Certain areas in the city with sparsely
located building having parks and lakes in the
surroundings have lower air temperature compared
to completely urbanised regions. UHI is evident
with the enhanced surface temperatures in urbanised
landscapes compared to their swrroundings (non-
urbanised). Temperature profile with respect to
human population density is depicted in figure 8,
suggesting that dense urban areas have higher
temperatures. When the population of a region
exceeds its carrying capacity, it exerts pressure on
the local natural resources (land, water, etc.).
Correlations among LST and NDVI are the result of
unique signatures of the biophysical parameters due
to interactions between thermal and vegetation
dynamics in each LU.

5. Conclusion

This study analysed the 7tole of increased
urbanisation through spatial change analysis on
LST, which is positively correlated with urbanising
landscapes and negatively correlated  with
vegetation and water bodies. Abundance maps with
pixels having 80-100% dense builtup and mixed
builtup class proportions show increase in urban
temperature by an average of 2 °C. LST were
comparatively lower in areas having parks, healthy
vegetation and lakes that aid as heat sinks. Although
the algorithms adopted here seems to work
satisfactorily, the classification and change detection
methods in use were not very suitable for handling
multi-sensor, multi-resolution condition as the
classification accuracies obtained from MODIS data
were low. These require advanced image fusion and
LU classification algorithms or machine learning
techniques to be adopted to achieve higher
classification accuracies. The unmixing decision
based approach adopted in this paper is an attempt
to achieve classification results with higher
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accuracies per class. This could be automated to
obtain LU classes and bring out changes across
multi-temporal data routinely. Methods of change
detection from multi-resolution images integrating
spectral, structural and textural features to generate
changed patches and change attribute is also
desirable and a challenging area of research.
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