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Abstract

This paper review past and current research activity in the area of generalisation of spatial data and presents
a new methodological framework for segmentation and generalisation of raster data. In order to overcome
drawbacks associated with supervised classification and genervalisation of rvaster data, an Interactive
Automated Segmentation and Raster Generalisation Framework (IASRGF) was developed and tested. Test
results of the IASGRF shows that all objects derived from the generalisation of landuse data over Canberra,
Australia, were well classified and mapped. The ervor assessment indicates that the percentile classification
accuracy is 85.5%, whereas the commission error is rvelatively high (38.5%,). More importantly, the maximum
likelihood classifier using training sites and associated ground truth data suggests that the Kappa index is
0.798, which can be interpreted as a veliable and satisfactory classification result. In order to further enhance
supervised classification, a post-classification was carried out. As a result, this extra process improved the

overall classification accuracy slightly, however its commission error also increased by 6%.

1. Introduction

The motivation of this study was to develop a
workflow to detect landuse features from satellite
imagery and apply the concept of raster generalisation
to a generalisation framework for both vector and
raster data.  Generalisation of  Geographical
Information System (GIS) data is one of the
challenging tasks for cartographers. It is particularly
difficult to automatically generalise thematic raster
maps derived from remotely sensed data. Over the
past two decades many generalisation techniques have
been developed. Generalisation of vector data and a
generalisation framework for road networks was
discussed previously by the authors (Kazemi and Lim
2007 and Kazemi and Lim, 2005¢). On the other hand,
generalisation of raster data such as satellite imagery
has been studied by, for example, Petit and Lambin
(2001), Daley et al., (1997), He et al., (2002). Kazemi
et al, (2005a) also applied three generalisation
techniques  (supervised  classification, thematic
generalisation and spatial aggregation) in order to
build a raster generalisation framework known as
Interactive Automated Segmentation and Raster
Generalisation Framework (IASRGF) for
segmentation and generalisation of satellite imagery.
This paper further discusses the IASRGF, which was
developed to overcome drawbacks associated with
supervised classification and raster generalisation.
Test results of the TASRGF shows that all objects
derived by generalising landuse data from Landsat-7
imagery over Canberra, Australia, were satisfactorily
classified and mapped. Raster generalisation

algorithms (e.g. aggregate, boundary clean, expand,
majority filter, region group, shrink, thin) embedded
in a typical GIS software package can be applied to
either clean up small erroneous cells/pixels such as
unclassified data derived from remotely sensed
imagery, or for the generalisation of raster data
obtained from a scanned paper map in order to
remove/smooth out unnecessary details including lines
and texts or data imported from some other raster
format (ESRI, 1992). The majority of existing
software packages lack workflow, procedures or
straightforward practical guidelines (protocols). If a
cartographer’s expertise and knowledge are applied to
the software, many raster generalisation problems
could be solved. Daley et al., (1997) compared a raster
method (MapGen) and an object-oriented method
{ObjectGen) to automatically generalise forests from
multiple image datasets ranging from 1m to lkm
spatial resolutions by segmentation of remotely sensed
images (MEIS Im, AVIRIS 20m, TM 30m, and
AVHRR 1km), at corresponding resolutions to the
GIS files to constrain the generalisations. MapGen is
an automated raster generalisation system that is based
on a set of polygon and vector generalisation rules.
Each polygon rule specifies how to merge
neighbouring polygons if their size is smaller than a
specified minimum tolerance. In this system, feature
attributes are stored in a database for fast sorting and
selection. The GIS dataset used was composed of
topographic data and forest cover maps, both at the
1:20,000 scale. Generalisation was carried out on
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three forest cover maps to create broad classes for
deriving data with a map scale ranging from 1:20,000
to 1:250,000. It was concluded that there were no
significant differences in class areas between the two
generalisation methods and the original areas.
Approximately a 72 percent reduction of the original
mput data was achieved without significant errors in
class areas. However, the authors used ObjectGen and
MapGen for purely research purposes and did not
demonstrate the operational use of their methodology.
Similarly, Cihlar et al, (1998) developed a
Classification by Progressive Generalisation (CPG)
procedure using fused AVHRR and Landsat-5 (30m
resolution) data. It was demonstrated that CPG gave
superior accuracy to other existing classification
methods. They also demonstrated that CPG is user-
friendly and has potential applications for other
merged imagery datasets. Jaakkola (1998) also
presented a rule-based generalisation methodology for
generating land cover maps from raster data. It was
shown that it is feasible to automatically derive small
scale land cover maps from large scale data using
raster generalisation techniques and map algebra.
Forghani et al., (1997) applied various combinations
of morphological operations (e.g. dilation, erosion,
skeletonisation) to extract and generalise roads from
aerial photography. However, one shortcoming of this
approach was that it is computationally expensive.
Also, significant testing is required to determine an
optimal  threshold when  applying different
morphological operations. Furthermore, Gjertsen
(1999; cited in AGENT, 1999) at the Norwegian
Institute of Land Inventory developed a workflow for
the generalisation of a Norwegian national land type
database that relies on the use of two generalisation
processes:  attribute-based  generalisation  (e.g.
reclassification) and geometry-based generalisation
(c.g. line elimination, class integration, area
aggregation and area elimination). A total of 13
classes were used in the generalised classification
system, and all area features were reclassified based
on their attributes. It seems that this approach has the
potential for operational use. In addition, Walter
(2004) applied an object-oriented classification of
multispectral remote sensing data using a supervised
maximum likelihood classification. A GIS database
was used to derive training areas to update
topographic maps at 1:25,000 scale. However, it was
not clearly explained how generalisation was used to
update the topographic database. In another study,
Wenxiu et al., (2004) developed a knowledge-based
generalisation of landuse maps for scales 1:10,000 to
1:50,000 using Arc/Info’s generalisation tools. Two
generalisation  knowledge sources were  used,
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including general knowledge (e.g. geometric and
topological, GIS analyst’s knowledge and experience
on generalisation operations and GIS data
management), and thematic knowledge (e.g. terrain
knowledge, application-based knowledge). A series of
rules, including rules of feature selection, attribute
transformation, and rules for merging features, were
employed. Although this research focused on vector
generalisation it provides some constructive ideas on
the integration of expert human knowledge. He et al.,
(2002) investigated effects of rule-based spatial
aggregation index and factual dimension techniques
on classified Landsat-5 imagery in an attempt to
compare the effects of majority and random rule-
based aggregations when examining the distortions
introduced by data aggregation with regard to cover
type quantities and landscape patterns. The findings
indicate that these spatial aggregation methods over a
broad range of spatial scales (30-990m) lead to
different outcomes in terms of cover type proportions
and spatial patterns. The rule-based aggregations
resulted in distortions of cover type percentage areas
reported in other studies (e.g. Moody and Woodcock,
1995). In contrast, using random rule-based
aggregations did not distort the results significantly.
This is superior to the majority rule-based
aggregations; hence this technique is a promising tool
for scaling data of fine resolution to coarse resolution
while  retaining cover  type  proportions.
Notwithstanding the extensive research that has been
undertaken, there are stull intractable problems
regarding these approaches which often make them
impractical in an operational environment. Fully
automated generalisation of raster and vector data has
still a long way to go. Meanwhile, to meet current
map production requirements for generalisation of
raster data, a common approach is to classify imagery
with the application of a trained image analyst /
cartographer’s knowledge, to reclassify and recode
that classified data, and to then apply statistical and
spatial filtering methods.

2. Study Strategy

A schematic representation of the research
methodology is presented in Figure 1. This research
complements a previous study (see Kazemi and Lim,
2005b) in which ArcGIS generalisation capabilities
were tested. The framework is based upon parameters
presented in Daley et al., (1997) and Petit and Lambin
(2001). However, all the processes in the flowchart are
considered specifically for raster generalisation using
both Leica Geospatial ERDAS IMAGINE and ESRI
ArcGIS systems.
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Figure 2: Study area, Canberra, Australian Capital Territory (ACT) Australia.
(Data courtesy Geoscience Australia © 2001)
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These provide generalisation functions through a
variety of algorithms and operations on raster data.
Various functions, such as the maximum likelihood
classification, filtering, aggregate, merge algorithm,
with a variety of parameters, have been tested. Tmage
segmentation applies both spectral information (feature
vector of the pixels) and spatial information (size,
shape, texture, contextual information and adjacency to
other pixels) to detect appropriate segments / classes
within a given image. In this study Landsat-7 imagery
acquired over Canberra (Figure 2) was pre-processed
and segmented into 19 landscape themes, each
containing several sub-classes, forming a total of 10
classes in the master image database. The road class
was firstly derived from the pixel-based classification
because, at a resolution of 30m, and the geometric
linear characteristic of the object, the road consists of
many pixels and needs to be verified with existing
ancillary GIS data (e.g. 1:250,000 national topographic
data, Landsat-7 imagery). Similar themes based on the
landuse category were collapsed and, thereby,
generalised. Problematic features (e.g. residential
buildings and industrial buildings, roads and building
roofs) which exhibit similar spectral characteristics
were then reclassified. This was done through on-
screen digitising of the problematic features based on
the GIS analyst’s knowledge and the ancillary
information (e.g. existing topographic maps, street
directory road maps). These features were then
subtracted from the master classified database
followed by reclassification of each of the subset
datasets. Also, existing roads were buffered and
rasterised. In a later step, the reclassified subset
databases were mosaiced with the master database to
form the final segmentation thematic map. Finally,
thematic generalisation was applied.

2.1 Data Pre-Processing

Because data could come from disparate sources and
often the user has limited knowledge of the source, it
is essential to perform some validation and testing of
data prior to starting generalisation. Topology
validation, geometric feature validation and feature
attribute quality checks were performed on the
1:250,000 national topographic roads data which
was used in this study.

2.2 Generalisation Methods

Three techniques were used to control the properties
of the generalised data which should be
distinguished:

2.2.1 Supervised classification: was used to group
objects, using an object-oriented segmentation
method, into several landscape themes, each
containing several sub-classes, forming a total of 19
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classes. Similar classes were combined to form a
total of 10 land cover categories.

2.2.2 Thematic generalization: was used to merge
the derived classes, on the basis of similarities in
their landscape characteristics. It is difficult to
automate this process due to its complex, diverse and
non-deterministic  nature,  particularly  when
attempting to effect a subjective and intuitive
procedure (i.e. when, where and how to generalise).

2.2.3 Spatial aggregation. was applied to raster data
to aggregate cells on the basis of their spatial
neighbourhood. Experience shows that this method
is particularly applicable to the treatment of land
cover (Moody, 1998 and Petit and Lambin, 2001).
The buftered road data was rasterised at the closest
resolution (30m) to the ETM+ resolution, and was
gradually aggregated with a majority filter. In this
way, generalisation of cluttered features becomes an
easy task.

2.3 Supervised Classification

The objective of multispectral image segmentation is
to segment the image into spectrally homogeneous
regions. Multispectral image classification is
categorised into two main approaches: whether
supervision from an operator is required or not. The
GIS or image analyst closely controls a supervised
classification process by selecting pixels that
represent known landscapes. Obviously, the analyst
uses GIS data and ancillary information (e.g. ground
truth data, existing landuse data, SPOT-4 data, etc)
to facilitate the classification. In this process the
analyst trains the machine to recognise the similar
patterns (pixels) or homogencous regions that
represent each class. Defining a set of desired classes
is an integral part of the process and it is possible to
define as many classes as required. Then an
appropriate strategy is sclected for assessing the
information in the available data, and to make
decisions for labelling classes. The spectral
signatures of landscape types might be confirmed by
reference to ground data (e.g. Foody, 2002 and
Wang et al., 2004) or by the analyst defining the
classes by interactive extraction of training areas
{Leica, 2004). These spectral signatures are then
used to classify all pixels comprising the image. The
supervised technique is well documented in the
literature and is the most popular multispectral
classification method (Richards, 1986, Johnson,
1994 and Petit and Lambin, 2001). Among the most
popular supervised classifiers are minimum distance,
parallelepiped, and maximum likelihood. A
maximum likelihood algorithm estimates the
likelihood of a particular pattern belonging to a




category. One of the advantages of the maximum
likelihood classifier (MLC) is that it is easy to use
and theoretically guarantees minimisation of the
classification error. This is the most widely
employed classification algorithm for digital
classification of imagery (Bolstad and Lillesand,
1991, Trietz et al., 1992, Johnson, 1994 and
Forghani et al., 2007). The MLC technique was used
in this study for image classification as it takes into
account spectral descriptions for classes modelled
using multivariate Gaussian densities (Yang, 2007).
In this work the training areas were selected with the
use of area-of-interest tools and stored in a Signature
Editor file. The result of this supervised
classification of the ETM+ imagery is presented in
Figure 3. In built-up areas, problematic features such
as roofs, streets, and pavements, exhibit similar
spectral reflectance and this increases
misclassification errors. To overcome this problem
and to improve the classification success rates,
several classes were initially selected and assessed
by available GIS datasets. Maximising the number of
training areas helps to minimise confusion between
similar features and decreases the misclassification
rate.

2.4 Image Reclassification
The main concern in this research is to map out the
landuse classes.

The buffered road map in raster format was used as
control data. The segmented data was then compared
to the existing roads map and landuse data to assess
the classification accuracy. Later, spectral classes
with similar cover types were merged to form 19
classes. The resulting modified signature file was
applied to perform the MLC using a standard
deviation of 2. Then finally, a map was produced
showing 10 classes (see Table 1).

2.5 Thematic and Spatial Generalisation
Raster-based generalisation of Landsat ETM+
imagery land cover data using statistical filtering
available in ERDAS IMAGINE and the aggregation
operation tool of ArcGIS is shown in Figure 3. These
tools provide raster map algebra methods that
resample raster map layers using various aggregation
techniques such as averaging and interpolation of
raster map layers. The input raster layer was
generalised so that each raster cell covers an area of
30 x 30 meters on the Landsat imagery. Aggregate is
a generalization function applied for raster data. A
similar function called ‘dissolve’ that is used for
polygon themes stored as vector data. The ‘dissolve’
function removes borders between polygons having
the same value for a given attribute.

Table 1: Descriptions of landscape classes from ETM+ data supported by a GIS database

1,2 Water

3,43 Bare land

6,7 Agriculture

8,9 Grasslands

10 Shrublands

11,12 Forests

13,14 Commercial and industrial
areas

15 Residential areas

16,17, 18 Roads

19 Other
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Figure 3: Comparison of classification and generalisation outputs.
{Data courtesy Geoscience Australia © 2001)

3. Discussion

It is important to gauge the accuracy of the
segmentation method. To evaluate output of the
proposed raster classification and generalisation
framework, the accuracy of the final segmentation
and gencralised map was visually evaluated by
superimposing the road buffer layer and other
landuse data over the classified image. Also, the
segmented image was numerically compared to the
existing landuse map using coincidence matrices and
accuracy measures. Mapping man-made features in a
heterogeneous environment such as a built-up area is
problematic since the roads and other man-made
structures (e.g. buildings) exhibit similar spectral
characteristics. Bare soils, dirt roads, tracks, and
roofs have very similar spectral signatures. The
confusion of these features with roads is clearly
demonstrated. Overall classification accuracy was
85.5 percent. In Table 2, the accuracy measures
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(Kappa coefficient, overall classification accuracy,
producer and user’s accuracy, commission and
omission errors) corresponding to the various classes
are presented along with the error matrices for
supervised classification of Landsat ETM+ data.
Gurney (1981) indicated that when an automated
classifier is used over an urban area, errors increase
considerably. The results demonstrate that
approximately 85.5 percent of all objects were
correctly classified. The results were validated by
calculation of the pixel-by-pixel accuracy. The
certainty and uncertainty of the classified pixels
were validated for the study area. The accuracy for
classification and generalisation of man-made
structures increased over rural areas, as the image
exhibited a greater contrast between the roads and
other clements. The estimated overall accuracy
based on the reference map agreed with the overall




visual interpretation of the output. To demonstrate
the quantitative assessment of image segmentation,
the classification accuracy, omission errors and
commission errors for each class were computed and
presented in a confusion matrix (Table 3). This
approach to image segmentation accuracy evaluation
is widely documented in the literature (e.g. Harris
and Ventura, 1995 and Wang et al., 2004). Ton et
al., (1991) described the omission errors as the
omitted pixels in the classification process divided
by the total number of pixels in the land cover type,
whereas the commission error represent pixels
labelled as the land cover type by the algorithm but
not by the ground truth data. The classification
accuracy of a land cover type is defined as the
number of correctly classified pixels divided by the
total number of pixels in the land cover type. It is
clear that classification accuracy plus the omission
error should sum to 100 percent. The commission
error is considered as a separate statistic.The
accuracy assessment presents the overall accuracy,
Kappa, commission (% of extra pixels in class) and
omission (% of pixels left out of class) errors,
producer accuracy and user accuracy for classified
image. The confusion matrix results demonstrate
how each of the accuracy assessment is derived. The
maximum likelihood classifier using training sites

and associated ground truth data produced an overall
accuracy of 85.5% and a Kappa coefficient of 0.798.
Cohen's Kappa coefficient statistical measure (k) is
considered to be a robust measure for the uncertainty
associated with spatial information (Hope & Hunter,
2007). While there are no absolute cut-offs for the
Kappa coefficient, 0.7 or higher is widely accepted
as a satisfactory value. In this study, the Kappa value
for the classified image was 0.798 indicating that an
observed classification is in agreement to the order
of 79.8 percent. This value indicates a substantial
agreement based on the Kappa categories by Landis
and Koch (1977). The overall accuracy is defined as
a percentage of the test-pixels successfully assigned
to the correct classes. The overall classification
accuracy decreased in areas where the roofs of
buildings, bare soils, concrete, and tracks roads have
very similar spectral characteristics. This problem
can be related to increasing noise due to the
heterogeneous nature of the spectral response of
urban areas (Gerke and Heipke, 2008) and cleared
agricultural lands. Similar classification accuracy
has been reported using maximum likelithood
classifier with identification of six broad cover types
over a rural/urban area from SPOT and TM data
{(Welch, 1985, Moller-Jensen, 1990 and Barr, 1992).

Table 2: Image segmentation accuracy summary statistics
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Accuracies in the range of 55-81% have been
reported. To enhance the supervised classification
results, post-classification was carried out. It was
found that this improved the overall classification
accuracy slightly, but commission errors also
increased (by 6%).

4. Conclusions

The aim of this study was to develop a new
methodological framework for segmentation and
generalisation of raster data. The Interactive
Automated Segmentation and Raster Generalisation
Framework (IASRGF) can be used to map out
features from satellite imagery using an object
segmentation and database generalisation approach.
Three methods — supervised classification, thematic
generalisation and spatial aggregation — were used
to test the raster generalisation framework by
applying the methodology to the integration of GIS
data and remotely sensed data to segment landuse
classes. The study demonstrated the usefulness of an
image segmentation technique for deriving landuse
categories. This framework can serve as a practical
methodology to segment Landsat-7 or similar
datasets over urban and rural areas where traditional
image classification methods fail to deliver
satisfactory results. It 1is suggested that the
methodology can be tested further for multiple scale
generalisation through the integration of different
satellite 1mages from fine resolution to coarse
resolution.
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