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Abstract

This work investigates dengue affected localities of Delhi using static and dynamic environmental factors and
their possible spatial relationships. The static variables include soil drainage, built-up area and vegetaiion,
The dynamic variables represent seasonal precipitation and temperature data for past hundred years.
Significance test (1-tesi) provided deterministic evidence of variable importance to model. Weighted sum and
quantile classification helped to create a final risk map. The model indicated non-uniform disiribution of risk
across the state and showed elevated risk in urban buili-up areas mainly alongside the river Yanmuma. Three
years (2007, 2008 and 2009) data for confirmed dengue cases for affected localities were oblained from
Mumicipal Corporation of Delhi (MCD) for validation. 57.98% of the reported cases were observed under
high risk category as modeled in this study. Modeling results indicate that environmental factors like
precipitation, temperature, soil drainage, built-up area and vegetation govern mosquito breeding and are
correlated with human dengue risk. The approach verified that dengue risk can be modeled at the state level

and can be modified for risk predictions of other vector-borne diseases in varied ecological regions.

1. Introduction

The subject of disease outbreak prediction modeling
has long been of help to community and public
health planners (Comber et al, 2011). Previous
research on outbreak prediction has been in two
distinct and wusually non-overlapping areas. One
branch has considered the spatial dimensions related
to geographical features (vegetation, water bodies,
etc.), with data being manipulated and
geographically  analyzed using Geographical
Information Systems (GIS) before subsequent
statistical analyses (Cooke et al,, 2006). Another
body of rescarch has examined outbreak prediction
by considering the socioeconomic aspects with data
collected using opinion or atfitudez surveys
(Bhandari et al., 2008). However, the emergence, re-
emergence and distribution of vector-borne diseases
are controlled both by geographic as well as
socioeconomic factors such as structure of
ecosystemns (Clennon et al, 2010), climatic
variability (Debien et al., 2010), human behavior
{WHO, 2005), and ecoclogy of vector and animal
hosts of the infectious agent (Roels et al., 2011).
Analyzing these oomplex landscape elements of

interacting agents requires an interdisciplinary
approach. Data from different sources and at

different scales need to be linked, using geospatial
analytic methods (Lambin et al., 2010). There is an
emergent need to focus on correlating the health
data with the spatial dimensions using geospatial
tools to develop a valid and acceptable outbreak
prediction model for vector bormne diseases. Dengue
is an arboviral infection and is of great concern
nowadays (Solomon et al, 2000). World Health
QOrganization (WHO}) currently estimates 50 million
dengue infections worldwide every year. The
incidence of dengue has grown dramatically around
the world in recent decades as some 2.5 billion
people — two fifths of the world's populaticn — are
now at risk from dengue (WHO, 2009). The disease
is now ecndemic in more than 100 countries in
Africa, America, Eastern Mediterranean, Western
Pacific and South-east Asia (most seriously
affected) with an estimated 500,000 people
tequiring hospitalization each year {a very large
proportion of whom are children) and about 2.5% of
those affected die (WHO, 2009). India is one of the
countries which had acute incidences of Dengue in
recent past. New Delhi, the capital of India, has
emerged as one of the hotspots of Dengue and
Dengue Hemorrhagic Fever (WHO, 2007).
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This study is taken up to estimate likelihood of
dengue infection in the state of Delhi by analyzing
spatial and climatic data to model habitat suitability
for the vector, Aedesaegypti. It inhabits in a variety
of environments and can be found in urban as well
as rural settings. We viewed mosquito habitat
suitability as a surrogate for estimating potential risk
of dengue infection for humans and tested the
usefulness of selected environmental variables in an
analytical risk model. The output was in accordance
with the environmental conditions promoting the
growth of mosquitoes and the health data obtained
from the health centers, The districts of East Delhi,
North East Delhi, Central Delhi and North Delhi are
amongst most severely affected. The areas are
adjeining to river Yamuna.

2. Methodology

2.1 Study Area

Delhi occupies an area of approximately 1463sq km
of which around B00 sq km (around 52%) is
classified as urban (Rahman et al., 2011). The city is
divided into nine districts (figure 1). Delhi remains
typically hot in summer, humid in monsoon and
cold during the winters. The average temperature of
New Delhi ranges from 25°C to 46°C during
summer and 2°C to 25°C during winter with an
average annual rainfall of 570 mm
(http://indiawaterportal.org). The cold waves from
the Himalayan region along with winter rains due to
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western disturbances make the winters very chilly.
In summers, the heat wave is enormous and
adequate precaution has to be taken before going out
in the aflernoons. Such big and sudden climatic
variations make it a hotspot for vector bome
diseases. Three agencies, namely Municipal
Corporation of Delhi (MCD), New Delhi Municipal
Committee (NDMC) and Ministry of Defense are
responsible for dengue control activities in the state.

2.2 Data Used

Three years (2007, 2008 and 2009) locality-wise
menthly disease data were obtained from the MCD.
The geographic coordinates of these localities were
obtained using Google earth. The year was divided
into four seasons (rainy, summer, winter and spring)
using temperature and rainfall observations of
previcus hundred years (hitp://indiawaterportal.org).
The built-up area (figure 2a) and vegetation maps
(figure 2b) were prepared using October 2010
Landsat ETM satellite imapery and high resolution
Google earth imagery. Soil map (1:125000) was
digitized from the database prepared by National
Bureau of Soil Survey & Land Use Planning (NBSS
& LUP) and the drainage network from Survey of
India (SOI) toposheet (figure 2¢). Seasonal dengue
occurrence maps were prepared from Inverse
Distance Weighted (IDW) interpolation of the point
data using number of confirmed cases (figure 3a-d).

Figure 1: Location of the Study Area
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Figure 2: Distribution of (a) Habitation, {b) Vegetation and (c) Soil drainage
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Figure 3: Distribution of Dengue cases in different zeasons (a) Winter, (b) Spring, (¢) Summer and (d) Rainy
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2.3 Spatial Modeling

Broadly the methodology followed was preparation
of maps of static and dynamic variables, integration
of layers using statistical model in GIS environment,
prediction of outbreak risk as a map and validation
of prediction. The selection of environmental
variables used in the study was based on evaluation
of specific mosquito habitat conditions (Kolivras,
2006) and conditions promoting mosquito breeding
(Winch et al, 2002). The static variables were
assumed to change slowly or not at all over the time.
The static variables chosen were soil drainage, built-
up area and vegetation. The dynamic variables
selected were climatic and meteorological
conditions throughout the year, The potential mlti-
colinearity among the variables was disregarded and
it was assumed that all are important to the dengue
risk estimation. Ranks to the static layers were
aszigned by performing t-test. The #-test compares
one variable (in this case, occurrence of dengue)
between two groups (here built-up and nen-built-up,
vegetated and non-vegetated, and moderately and
excessively drained soil classes). Students’ t-test
was used to assess whether the means of two groups
are statistically different from each other. More the t
value, more significant is the difference between the
means. Given below is the formula to calculate t-
value:

X=X
1 2
b 2 2
51 + 55
L3 L]

(Formula 1)
Where,
X4 = Mean of sample 1

X, =Mean of sample 2

7, = Number of subjects in sample 1
7, = Number of subjects in sample 2
sf = Variance of sample 1

s% = Variance of sample 2

A flow diagram (figure 4) of the methodology
followed is given below:

Based on the t-test, it was observed that the most
significant factor for the occurrence of dengue was
goil drainage (highest t value) followed by built-up
and vegetation. So the respective ranks given to
these layers were 1 for soil drainage, 2 for built-up
and 3 for vegetation. The weights were assigned
using following formula (Cooke et al. 2006):

N ./ & il
7 Zmn-r+1)
{Formula 2)

Where, w; is the normalized weight for the "
variable:

n ig the number of variables under consideration

1; i8 the rank position of the variable

Using formula 2, the weights for different static
layers of significance were computed. The
calculated weights were 0.5 for soil drainage, 0.34
for built-up and 0.16 for vegetation. The details of
different classes and respective class weights are
given in table 1. Ranks and weights to the dynamic
scasonal layers were assigned based on the
percentage of confirmed cases in that scason. For
example around 80% cases were recorded in rainy
season. So it was assigned a weight of 0.8. Likewise
summer, winter and spring were assigned weights of
0.1, 0.06 and 0.04 respectively. Assigning the ranks
to these layers did not require t-test as the difference
between number of confirmed cases recorded in
rainy season and those recorded in other three
seasons was huge, thus proving the importance of
precipitation and temperature characteristics of
rainy season over other dynamic and static layers
favoring dengue occurrences. Sc in order to
incorporate this prevalence in the model, rainy
season was assigned the highest weight.

Table 1: Distribution of different classes and respective class weight

Habitation Vegetation Soll Drainage
Grid Cless Area | Area | Class Class Area Area Class Area Areca
Code (sqkm) | (%) |weight (sqkm) | (%6) (eqlem) | (%)
1 Water body 9.71 0.65| 1 [Waterbody 9.71 0.65 Water 25.07 1.83
body
2 Built-up 770.16 | 5187 5 [Built-up 770.16 | 51.87 Built-up 43742 | 32.00
3 Nonbuilt-up | 704.83 | 4747| 3 [Sparse 450.61 | 3035 Moderate | 36825 | 26.94
vegetation
4 Dense 25075 | 16.89 Low 45.00 329
vegetation
5 High 491.20 | 35.93
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Figure 4: Flow chart showing methodology followed

2.4 Weighted Sum and Quantile Classification
ArcGIS provides weighted sum tool to weigh and
combine multiple inputs to create an integrated
analysis model. It is similar to weighted overlay tool
in which multiple raster inputs representing multiple
verigbles can be easily combined incorporating
weights or relative importance. One major
difference between weighted ovetlay tool and
weighted sum tool is that weighted sum tool allows
for floating point values whereas weighted overlay
tool only accepts integer values
(htip://webhelp.esri.com). Generally, the values of
continuous rasters such as slope or Euclidean
distance outputs are grouped into ranges, where
each range is assigned a single value to represent a
class such as low, medium or high importance. The
reclassify tool allows reclassifying the values for
such rasters. The weighted overlay tool is used most
commonly for suitability modeling and should be
used to ensure that the correct methodologies are
followed. The weighted sum tool is useful when
floating-point output or decimal weights are
required. The following model equation was used in
the weighted sum tool:

Outbreak risk = Static model + Dynamic model

‘Where, Static model = Soil drainage x 0.5 + Built-
up x 0.34 + Vegetation x 0.16

Dynamic model = Rainy % 0.8 + Summer x 0.1 +
Winter X 0,06 + Spring x 0.04

The output was further refined imto five risk
categories by quantile classification. Quantile is one
of the class of values of a variate which divides the
members of sample into equal-sized subgroups of
adjacent values or a prebability distribution into
distributions of equal probability
(hitp://support.esri.com).

3. Results

The outbreak prediction map was obtained after
following the above mentioned model. In Delhi, the
dengue risk appears to be associated mainly with
rainy season and subsequent water logging because
of poor so0il drainage. The dengue susceptibility map
is shown in figure 5. The areas recorded for
different risk classes are shown in table 2. Dense
built-up was also found to be significant because of
higher population at risk. Looking at the risk map
keeping in mind both demse built-up and water
logging factors, we observed that the zones along
the Yamuna river either fall under high risk or
elevated risk, The districts of East Delhi, North East
Delhi, Central Delhi and North Delhi are most
densely inhabited and are worst hit. This region
records maximum number of cases each year.
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This output was compared with the MCD health zone. The areas under low and moderate risks
data for consecutive three years (2007, 2008 and accounted only for 2% of total cases thus supporting
2009). Very high degree of correlation was the model hypothesis strongly. These low risk areas
observed. About 58% of total cases fall in high risk = were observed mainly along the outskirts of the city.
zone of the output followed by 33% in elevated risk

Table 2: Distribution of different risk classes

Class Area (%) Recorded cases (%)
| High risk (5) 19.73 57.98
Elevated risk (4) 2143 33.02
Moderate risk (3) 20.48 7.00
Low rigk {2) 19.66 1.20
Minimal rigk (1) 18.70 0.80

Legend (Susceptibility Classes)
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Figure 5: Result and Validation
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4. Discussion and Conclusions

In thiz study, spatial estimation of dengue risk in
Delhi was carried out by analyzing dengue and
environmental data. The model was developed
assuming that mosquito habitat suitability factors
can be used to estimate the risk of dengue, The t-test
for each pair of extreme variables was the basis for
ranking the static layer importance,  Several
environmental factors were considered and
according to our analysis, in Delhi, dengue risk is
correlated to high built-up (0.34} and moderate
drainage of soil (0.5) as well as ocourrence of rains
and water logging (0.8). The methodology
developed is exclusively based on health data and
can be easily modified for various vector-borne
diseases in varied ecological regions. Denpue risk
map was validated with human case data and clearly
shows areas environmentally prone to sustaining the
virus. The vegetation layer was included in the
model based on literature survey as it is supposed to
be a good habitat for mosquito breeding but it was
found to be of least importance as majority of
pepulation resides in dense built-up areas of the city
and away from vegetated areas. In a city like Delhi,
most of the population resides within densely built-
up area, Thiz was the reason behind more number of
cases from built-up areas. Also the areas along the
river Yamuna fall under high and elevated rizk
categorics. This was further confirmed with the
MCD dengue data. The outcome could be refined if
the health data available would have covered all
types of medical facilities including the MCD
centers. Also the soil drainage map used was
generalized and older (1999) for such a study. These
were the main reasons behind a large area difference
of built-up in soil drainage map and built-up in other
static layers of vegetation and habitation as the
Landsat images used to prepare these layers were of
2010. Over the span of these eleven years, Delhi has
experienced unforeseen constructional activities
leading to advent of two of the largest sub-cities of
Asia, Dwarka and Rohini. Heuristic methods of
variable weighting often employed in GIS analyses
can introduce personal bias in the modeling process
(Coake et al. 2006). In our study, statistical tests of
environmental variable significance provided
deterministic evidence of each variable importance
(weight) for predicting risk using GIS. This
approach diminishes the possibility of introduction
of analyst bias in medels (Cocke et al., 2006). This
information can help to develop mosquito control
strategies and aid regulatory agencies to prioritize
their preventicn efforts,
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