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Abstract

Traditional satellite image classifications are mostly confined fo supervised, unsupervised and hybrid
methods. An alternative to these approaches, subpixel classification is gradually changing the concept of
image classification. This technigue is advantageous particularly for medium to low resolution satellite
image, by removing the influence of associated features within a pixel. The Spectral Mixture Analysis (SMA),
is a typical subpixel classifier, and is applied here in forest classification of Gurdaspur, Hosiarpur and
Rupnagar districts of Punjab, India to explorve its authenticity and accuracy. A special effort was made to
accurately calculate the forest inventory in Punjab using the SMA, and the results were compared with the
data obtained through traditional classification methods. This technique enables estimation of proportional
Jorest type in a single pixel and may be used to estimate various aspects of forest vegetation important for

different forest modeling (forest growth, forest yield etc.), carbon budgeting and decision making.

1. Introduction

Extraction of accurate and detailed land use/ land
cover (LULC) information from remotely sensed
images still continues to be a challenge. A wide
range of alternative approaches such as image
slicing, segmentation and multispectral image
classification including supervised and unsupervised
techniques have been explored for land cover
mapping. Multispectral 1mage classification is
considered as one of the most efficient methods for
identification of land use/cover classes (Ketting et
al., 1976). In image classification, pixels of an
image are assigned to different classes based on
their spectral propertics. By comparing unclassified
pixels to those of known identity, it is possible to
assemble groups of similar pixels into classes that
match the predefined categories. Basically this
classification is based on information derived from
“training areas™ selected through ground truthing.
This has certain disadvantages in terms of cost and
time requirements for training area selection.
Particularly in case of forest classification, selection
of training sites in remote arcas is a major challenge.
In this regard, desktop-based advanced technique of
image classification with increased accuracy is
advantageous. Since forest mapping is generally
carried out at regional scale, medium (Landsat, IRS-
IC/ID, SPOT, Aster ete.) to low resolution (MODIS,
NOAA, SPOT VEGETATION Sensor, WiFS etc.)
satellite images are more economical than high-
resolution images. However, images with coarser

resolution lead to greater inaccuracy. This is more
so when a pixel is occupied by more than one land
cover classes. Hence the reflectance measured by
the sensor can be treated as a sum of interactions
among various classes present within a pixel as
weighted by their relative proportions (Strahler et
al., 1986). Mixed-pixel problem affects the effective
use of remote sensing data for LULC classification
(Fisher, 1997 and Jaisawal et al., 2002). Almost in
all the hard classification techniques, an entire pixel
is assigned to a specific land-cover class on the
basis of the classification scheme. Unsupervised
classification procedure makes groups or clusters of
multispectral values of the image into distinct
classes (e.g. sparse forest, dense forest, bare soil)
based purely on the image statistics, and generates a
new raster map displaying the class designations
within the image (Hall, 1994). This process does not
require the user to feed any information about the
features contained within the image. The objective
is to group multiband spectral response patterns into
clusters that are statistically separable. The two most
frequently used grouping algorithms are K-means
and the ISODATA clustering algorithms. The
present study applies ISODATA algorithm while
using unsupervised  classification technique.
Supervised classifications involve the use of ground
truth data and train the computer to group pixels
into clusters and to put them into certain land-cover
classes (Hall, 1994). Various algorithms (e.g.
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maximum likelihood, nearest neighbor etc) can be
employed to classify pixels not falling within
training areas (Cambell, 1996). The technique of
supervised classification considers the statistics of
every pixel in all the bands, and calculates the
probability that a given pixel belongs to a specitic
class (Settle and Drake, 1993). Tn absence of any
specific probability threshold, all pixels are
classified or assigned to a specific class. Therefore,
each pixel is assigned to the class to which it has the
highest probability (i.e. “maximum likelithood”) of
belonging. Supervised and unsupervised classifiers
cannot effectively solve the mixed-pixel problem of
complex landscape. On the other hand, most
vegetation indices are derived through band
ratioing. Chlorophyll pigment of vegetation is
known to absorb visible light, whereas leaf’s
mesophyll tissue strongly reflects near infrared light
(Cambell, 1996). As the amount of vegetation
increases within a pixel, surface reflectance in the
visible-red decreases and in the near infrared
increases (Hall, 1994). Vegetation indices such as
the Normalized Difference Vegetation Index
(NDVI), takes the advantage of these properties.
The NDVI can provide a measure of the vegetation
content within each pixel. By employing the
characteristic spectral response of vegetation, this
index allows the analyst to develop a measure of
one component of each pixel. An alternative
approach to solve the mixed-pixel problem is the
Spectral Mixture Analysis (SMA) technique as sub-
pixel classifier. This method recognizes that a single
pixel is typically made up of a number of varied
spectral types (i.e. soil, water, vegetation etc.)
(Atkinson et al., 1997), and determines the class of
the pixel based on the relative percentage of
occupancy by different land-cover classes. The
SMA technique reduces the cost of ground truthing
and improves classification accuracy. In the present
study, the SMA has been used on multispectral IRS-
1D data to differentiate mixed-pixels irrespective of
the percentage of their occupancy by different land-
cover classes. The present method was tested over
forest cover mapping. Ideally the classification of
image will give the best result if one pixel
represents one type of land cover. In reality
however, land-cover surfaces are often composed of
a mixture of materials and the separation between
them is not easy particularly in remotely sensed
images. When a sensor scans land cover units with
dimensions smaller than the spatial resolution of the
sensor, the pixel will bear the mixed signatures of
the land covers and the reflectance spectra produced
will not match any of the pure spectra of the
materials present within a pixel.

The objective of SMA is to identify primary spectral
contributions within each pixel (Adams et al., 1995).
The SMA allows decomposing each pixel into the
percentage of the pixel that is represented by the
major land cover classes that can be derived from
the image. A spectral mixture model is a physically
based model in which a mixed spectrum is modeled
a combination of ‘pure’ spectra, called endmembers
(Adams et al., 1995). Linear SMA is the process of
solving for endmember fractions, assuming that the
spectrum in each pixel on the image represents a
linear combination of endmember spectra that
corresponds to the physical mixture of some
components on the surface, weighted by surface
abundance. In this way, a profile of constituent parts
of each pixel is created and by aggregating those
values, the percentage of earth’s surface covered by
a particular class is determined more accurately.
Nevertheless, the SMA is a useful method of image
classification; particularly for defining proportions
of land cover types in pixels for coarser resolution
satellite imagery. While conventional image
classification matches pixels to broad classes of
features, the SMA attempts to identify surfaces from
their spectral data much more precisely than it was
done previously, particularly for medium resolution
satellite sensors. This is probably the first attempt to
classify the forest inventory with medium resolution
TRS-TD satellite data.

2. Study Area

The present study has been catried out in the north,
northeast and eastern borders of Punjab state of
India, consisting of Gurdaspur, Hosiarpur and
Rupnagar districts (Figure 1). The area is confined
within 30° 33 54" to 32° 30 16" N latitudes and 74°
52 53" to 76" 50 41" E longitudes, covering 9050
km* areas. Gurdaspur, the northern most district of
Punjab is confined between rivers Ravi and Beas
with latitude 31° 35 18" to 32° 30 16" N and
longitude 74° 52 53" to 75° 56 13" E. Hosiarpur
district is located in the north-eastern part of the
state. The district is sub-mountainous and stretched
along the river Beas to the north-west with latitude
30° 58 00" to 32° 04 16" N and longitude 75° 28 52"
to 76° 31 02" E. Rupnagar district located within 30°
33 54" and 31° 25 40" N latitudes and 76° 17 50" and
76° 50 41" E longitudes, occupies the eastern part of
the state, bordering the Satluj river (2 to 5 km).
Topographically hills and valleys characterize the
region with forest dominating in Thills and
agriculture in the plains. The Himalaya in the north
and the Thar Desert in south and southwest
influence rainfall and temperature in this region.
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Figure 1: A) District maps of Punjab highlighting the study area B) False Color Composite (FCC)
changed to grey scale of IRS-1D LISS III Satellite Image.

The mean annual rainfall varies from 300 mm to
1400 mm. Rainfall gradually increases from the
southeast towards the northwest. More than 90 % of
annual rainfall occurs during the monsoon season
(early July to carly October). While the rainfall
regime in this region is unimodal, the annual
cropping cycle is mostly bimodal. The rainy-season
crop (Khariff crop) is directly supported by
rainwater while the winter crop (Rabi crop) is
cultivated with the aid of irrigation water.
Depending upon water availability, summer crop is
cultivated in some places within the region. Cotton
and sugarcane are the main Khariff crops, while
wheat is the main Rabi crop. The summer crops
include vegetables and cereals. Natural vegetation
is dominated by open forest and shrubs, and is
denser in the hills.

3. Data

In this investigation Indian Remote Sensing satellite
image of IRS-ID LISS III, of October-November,
2003 have been used. The IRS satellite images
consist of three bands in the visible and near
infrared (VNIR) range, including B2: green (0.520-
0.590 um), B3: red (0.620-0.690 pum), and B4: near
infrared (0.770-0.860 um) with 23.5-meter spatial
resolution, and one band (B5) in short wave infrared
(SWIR — 1.50-1.70 um) with 70.5 meter spatial
resolution. In the present study, only first three
bands (B2, B3, and B4) have been used and the
SWIR band is ignored due to its low resolution.
Digital topographic maps of 1:50,000 scales were
used for selection of Ground Control Points (GCP)
and also to evaluate precision of geometric
correction. The IRS-ID LISS TIT images were
corrected by 40 GCP using 2™ degree polynomials
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{Root Mean Square Error = 0.25 pixel). The pixels
were resampled by the nearest neighbor method to
maintain their originality.

3. Methods
The image was digitally processed using PC based
ERDAS Imagine and ENVI software. In this
investigation both traditional (viz. supervised,
unsupervised and  vegetation index based
classification) and the advanced SMA techniques
were performed using IRS-ID LISS TIIT satellite
image to assess the potential advantages of the SMA
over the standard methods. For a comparative
analysis of different methods, a common input was
used for all the studies. Since in this investigation
only 3 bands of IRS-ID LISS ITT multispectral image
were selected, the maximum number of
endmembers for running the SMA model could be
three. However, the study area was found to be
occupied by more than three endmembers. To
remove the complexity of mixing among these
members, two distinct land cover classes
(agricultural standing crops and water bodies) were
removed from the study area based on their distinct
spectral properties. Water shows lowest retlectance
in the NIR band compared to green and red bands
and agricultural crops show a typical pinkish-red
shade in False Color Composite (FCC) image. Due
to its similarity, the built-up class was merged with
open bare soil. After merging and masking out the
above mentioned classes, the study area was left
with mostly three land-cover classes: (1) dense
forest (2) sparse forest and (3) open bare soil, which
were selected as the endmembers. The same
resultant image was used for traditional approaches
(like supervised, unsupervised and vegetation index
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based). However, for regions with agricultural land
or any other land-cover classes bordering forest
lands, endmembers should be selected accordingly.
An attempt was made to map the forest areas and its
two types namely dense forest (crown cover is 40%
or more) and sparse forest (crown cover is within
10-40%) apart from the open bare soil. The
accuracy assessment of the output data was done in
two ways: (1) comparing the forest areas with the
published statistical data by Forest Survey of India,
State of Forest Report -2003, and (2) using the
standard error matrix using the random sampling
data (total 30) taken from high resolution satellite
image and limited field survey. Ground truthing was
carried out by assessment of relative NDVI values
and limited ground truthing by using ISRO make 8
band ground truth radiometer. Overall accuracy,
user’s accuracy and producer’s accuracy (Congalton
and Mead, 1983) were calculated based on the error
matrix for all four-classification results.

3.1 Supervised Classification
The classification of IRS-ID LISS III multispectral
satellite image was carried out using maximum
likelihood classifier. The following basic sequences
of operations were used to perform supervised
classification.

1. Defining the training sites

2. Extraction of signature

3.Final image classification
In the first step of supervised classification the
training sites were selected from the areas within the
forest (dense and sparse forest) and from
surrounding open/bare areas.

Y "-‘L;:?. - ".‘ '-‘E"r ‘ﬂ e

» ,..‘;"-"" - ﬁ?‘k_ .

-

Figure 2: Sample training areas for supervised
classification of the study area

This is generally done by on screen digitization of
multispectral images. In this investigation, a total of

30 training sites were selected, with 10 sites in each
of dense, sparse and open areas. The training sites
were gathered from reference data sources including
existing topographic maps, and high-resolution
satellite images. The training sites were assumed to
represent pixels of known identity and covered
rather homogenous regions of land cover (Figure 2).
Training sites were linearly stretched into their
respective classes. Selected training sites went
through statistical characterization of information.
These were basically signatures for individual class.
The signature file contains a variety of information
about the land cover classes. The final step was
image classification with the maximum likelihood
classifier. Supervised classification started with
computing statistics for the selected training sites of
land-cover classes and the results of the statistical
summary were used to classify the image. The final
image was classified into the required three classes
a) dense forest b) sparse forest and ¢) open bare soil.

3.2 Unsupervised Classification

Unsupervised classification (ISODATA) works on
the principal of clustering of pixels of similar
spectral  properties.  This  method  requires
determination of the input spectral bands, desired
number of output clusters and the cluster threshold
radius. Firstly, the number of spectral classes for the
image was decided. Following the general rule of 20
spectral classes for cach land cover class in an
image, the image was classified into 60 spectral
classes. The advantage of obtaining a large number
of spectral classes was to improve the ability to
distinguish differences in the spectral appearance of
single land cover class. An initial unsupervised
classification was performed using the ERDAS
Imagine package with intent of separating the forest
areas from surrounding land cover classes. Image
containing band 2, 3, and 4 are processed using
ISODATA unsupervised classification algorithm
and forced into 60 initial classes. Classes were
manually labeled into three categories (dense forest,
sparse forest and open bare soil) same as was
derived using supervised classification techniques.
The labeling process was accomplished primarily by
analyzing the locations of pixels in each spectral
class and determining which land-cover class is
most likely represented.

3.3 Normalized Difference Vegetation Index (NDVI)
The NDVI map was created by the ratio of (Band4 —
Band3) and (Band4 + Band3).

Band4 — Band3
Band4 + Band3

NDVI =

Equation 1
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The NDVI model was run on the IRS-ID satellite
image. The output was sliced based on the NDVI
values (Figure 3). Thresholds for dense and sparse
forest have been decided based on the NDVI values,
and the final forest map was generated.

Figure 3: Normalized Difference Vegetation Index
(NDVT) map of the study area

3.4 Spectral Mixture Analysis (SMA)

The procedure used in this study was based on a
linear mixture model to derive continuous fields of
(1) dense forest, (2) sparse forest, and (3) open bare
soil. The SMA was performed on the three bands
(Band 2, band 3 and Band 4 i.e. VNIR bands) of the
IRS-ID multispectral image. The fourth band
(SWIR), which is of 70.5 m spatial resolution, was
not considered for this study. Commercially
available ENVI software package was used for this
SMA functionality with the name of linear
unmixing model. Since the visible bands are highly
correlated between the adjacent spectral wavebands
(Barnsley, 1999), Principal Component Analysis
(PCA) was run to transform the data from highly
correlated bands to an orthogonal subset. The steps
involved in the SMA process have been described in
the flow chart (Figure 4). The training data selected
for the SMA were same as used for training sites in
case of supervised classification to maintain the
same base information for forest mapping. The
idealized pure signature for a class from these
training sites is called an endmember. A variety of
methods has been developed to determine the
endmembers. Endmembers can be obtained for
manual selection through (1) a spectral library (2)
the image itself or high-order PCA eigenvectors
(Boardman, 1993); (3) spectrally pure pixel
identification wusing Pixel Purity Index (PPI)
(Boardman et al., 1995) etc.
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v
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images
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Estimate of percentage of
dense forest, sparse forest and
open bare soil

Figure 4: Flow diagram of the SMA process

In this study the endmembers were selected from the
image without using any spectral library. Scatter
plots of the 3 bands helped in locating the three
purest endmembers by taking the extreme corner
pixels. In two dimensions, if only two endmembers
mix, then the mixed pixels fall in a line in the
histogram. The pure endmembers fall at the two
ends of the mixing line. If three endmembers mix,
then the mixed pixels fall inside a triangle and pure
pixels are concentrated at the three vertices (Figure
5). Because of sensor-noisc and within-class
signature variability, endmembers only exist as a
conceptual convenience and as idealizations in real
images. The linear mixture model in the SMA
approach assumes that the spectrum measured by a
sensor is a linear combination of the spectra of all
components within a pixel (Adams et al., 1995).
Linear unmixing was performed using the
endmembers obtained, and keeping the unit sum
constraint as 1. The linear mixture model can be
mathematically described in a linear vector-matrix
equation:

DN, = (RxF,)+ E
k=1

Equation 2

o
o
2]
=]
g
20
g
2
=0
g
E
=
=
7]
5]
2
=~
o
-
|
.2
=
£
=
5]
[y
S
5
=
]
L
2
3
=
i
Bs]
n
Q
=
=y
£
=
£
=
=
=
2
=
o
et
S
=
S
A
g
2
g
3
o
=
E
5
g
]
53
Z




PL Band | {aubseirpea

17.87

—-10197 “81% b Band F Hubeaty:pea

Figure 6: Fraction images of A) dense forest, B) sparse forest, C) open bare soil, D) Color composite changed
to grey scale of the fraction images for the three endmembers. Open bare soil as very dark tone,
sparse forest as less dark tone and dense forest as very light tone.
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Where, i=1,......... , m (number of bands)
k=1,......... , 0 (number of endmembers)

DN , = Spectral reflectance of the i" spectral band of
a pixel

R, = known spectral reflectance of k™ component

F, = the fraction coefficient of the k™ component
within the pixel

E, = error for the i"™ spectral band

The satellite image used here is of three bands
(excluded the 4™ band due to its low resolution).
When the linear mixture model was applied to this
3-band image to estimate the combination of three
endmembers (x = dense forest, y = sparse forest and
7 = open bare soil), the mixture model becomes:

DN = [(RyxF)+ RyxF)+ RyxF)]+

[Rox Fy) + (Rpx Fy) + (R x F)] + 3 bands
[(Rx} X F,»;) + (Ry} X Fv) + (R x Fz)]

X y z

Where, DN is the spectral reflectance of a pixel in
IRS-ID 3-band composite image, R;. is the known
spectral reflectance or endmember values for dense
forest, sparse forest and open bare soil. The three
bands of IRS-ID scene are represented by the
parameter i and each of the three endmember is
represented by factor k. Fy is the fraction coefficient
of the k™ component within the pixel or the
fractional cover for dense forest, sparse forest and
open bare soil. The fraction image corresponding to
cach endmember was generated (Figure 6) and color
composite was prepared of the fraction
endmembers. The fractions represent the areal
proportions of the endmembers within a pixel. The
bright pixels of the image corresponds the higher
fraction of that particular endmember within the
pixel. The proportion of the endmembers in the
fraction image ranges from 0 to 1. Where 0 indicates
absence of the endmember and increasing value
shows higher abundance with 1 representing 100%
presence of the endmember in a particular pixel.
The fraction composition of individual endmembers
can be studied in Figure 7. The open bare soil pixel
has a higher fraction of open bare soil class and a
lower fraction of sparse forest and least fraction of
dense forest. The sparse forest pixel has very low
fraction of open bare soil and comparatively lower
fraction of dense forest. Similarly, dense forest pixel
has very higher fraction of dense forest and a lower
fraction of sparse forest and lowest fraction of open
bare soil.The SMA allows decomposing each pixel
into the percentage of the pixel represented by the
major land-cover classes that can be derived from

FRACTION VALUES
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the image. In order to compare the output of the
SMA with published data (by Forest Survey of
India, 2003) for dense and sparse forest, firstly the
SMA fractional image was converted into the
percent covered by the three endmembers for
individual pixel. The fractional files contain the
estimates of the fractional coverage associated with
each endmember and the values within 0 to 100
could be interpreted as percentages of that particular
endmember. In this way the profile of each pixel
was created of its constituents parts and by
aggregating those values, the aerial extent of
individual land cover class within the study area was
calculated.

Figure 7: Comparative study of fraction features
among three endmember (open bare soil, sparse
forest and dense forest) within a pixel.

4. Results

The outputs obtained from the four methods (Figure
8) as explained above, were compared with the State
of Forest Report, 2003 published by the Forest
Survey of India. The area statistics for individual
forest types in three districts of Punjab are available
in Forest Survey of India site (http://www.fsiorg.net
/f812003/states/index.asp?state_code=22).The utputs
were also compared with the limited field sampling
data collected across the three districts during the
study. The overall statistical data (Tables 1-4 and
Figure 9) reveals that the output derived through the
SMA technique has the highest correlation with the
data published in the State of Forest Report 2003 by
the Forest Survey of India. The next best correlation
has been found with the output of supervised
approach followed by NDVI and the unsupervised
approach. The error matrix computation (Table 5)
using four different classification approaches detect
the superior performance of the SMA over other
three approaches. The overall accuracy of the
classified map determined to be 90 % using the
SMA approach over the supervised classification
(76.67 % accuracy), the NDVI approach (63.33 %
accuracy) and the unsupervised approach (53.33 %
accuracy).The result complements the SMA
technique in mapping the forest cover along with its
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areal estimates that were derived, matches well with
the published state forest report. The results were
also validated with limited field survey across three
districts. Although the field survey was supported
by the use of ground truth radiometer data also.

composition and areal estimates due to its ability to
produce fractions representative of subpixel
components directly related to forest type and
relative area. Although the analysis used a spectral
unmixing technique based on the assumptions of the
linear unmixing model, the mixture proportion and

Classified map based on Supervised (MLC) approach

Classified map based on Unsupervised {ISODATA) approach
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Figure 8: Classified output of four approaches A) Unsupervised approach
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Figure 9: Graphical representation of outputs obtained through different models for three districts of Punjab

(A: Gurdaspur District B: Hosiarpur District C: Rupnagar District)

Table 1: Areal estimation of forest types from supervised classification

District Forest Cover No. of Pixels Area (Km?) using Supervised Area (Km?) in State of
Name Type classification Forest Report - 2003
Gurdaspur Dense forest 180579 112.86 96
Sparse forest 142520 89.07 96
Hosiarpur Dense forest 545185 340.74 327
Sparsc forest 502584 314.11 307
Rupnagar Dense forest 292322 182.70 162
Sparse forest 353593 220.99 212
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Table 2: Areal estimation of forest types from unsupervised classification

District Forest Cover No. of Area (Km?) using Area (Km?) in State of
Name Type Pixels Unsupervised classification Forest Report - 2003
Gurdaspur Dense forest 223547 139.71 96
Sparse forest 127554 79.72 96
Hosiarpur Dense forest 568844 355.53 327
Sparse forest 525784 328.61 307
Rupnagar Dense forest 321249 200.78 162
Sparse forest 369025 230.64 212

Table 3: Areal estimation of forest types from Normalized Difference Vegetation Index (NDVI)

District Forest Cover No. of Pixels Area (Km?) using Area (Km?) in State of
Name Type NDVI Model Forest Report - 2003
Gurdaspur Dense forest 202159 126.35 96
Sparse forest 135167 84.48 96
Hosiarpur Dense forest 556574 347.86 327
Sparse forest 512245 320.15 307
Rupnagar Dense forest 308068 192.54 162
Sparse forest 361581 22599 212

Table 4: Areal estimation of forest types from Spectral Mixture Analysis (SMA)

District Forest Cover No. of Area (Km’) using SMA | Area (Km?) in State of
Name Type Pixels Model Forest Report - 2003
Gurdaspur Dense forest 167463 104.66 96
Sparse forest 150580 94.11 96
Hosiarpur Dense forest 528479 330.30 327
Sparse forest 494634 309.15 307
Rupnagar Dense forest 268603 167.88 162
Sparse forest 342470 214.04 212

Table 5: Comparison of results and assessment of Classification Accuracy amongst the SMA, Supervised,
NDVI and Unsupervised approaches

Method Classified Data Reference Data Ref. Class | Number Producer’s User’s
Dense Sparse Open Totals | Totals | Correct Accuracy Accuracy
forest forest bare soil
SMA Dense forest 10 0 0 12 10 10 83.33% 100%
Sparse forest 2 8 0 9 10 88.88% 80%
Open bare soil 0 1 9 9 10 9 100.00% 50%
Overall Classification Accuracy = 90% (i.e. 27/30)

Supervised Densge forest 8 2 0 10 10 8 80.00% 80.00%

Classification Sparse forest 2 7 1 11 10 7 63.64% 70.00%
Open bare soil 0 2 8 9 10 8 88.89% 80.00%
Overall Classification Accuracy = 76.67% (i.e. 23/30)

NDVI Dense forest 6 2 2 10 10 6 60.00% 60.00%
Sparse forest 3 6 1 10 10 6 60.00% 60.00%
Open bare soil 1 2 7 10 10 7 70.00% 70.00%
Overall Classification Accuracy = 63.33% (i.e. 19/30)

Unsupervised Dense forest 5 3 2 9 10 5 55.56% 50.00%

Classification Sparse forest 3 5 2 11 10 5 45.45% 50.00%
Open bare soil 1 3 6 10 10 6 60.00% 60.00%
Overall Classification Accuracy = 53.33% (i.e. 16/30)

5. Discussion

Forest is one of the most important and precious
components in natural resources. Because of the
many benefits that can be gained from forests,
public and political interest is directed towards
sustainable management and development of it.
Planning for sustainable management of forests
requires accurate information about forest resources
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such as area and nature of forests and types of
plants. Mapping of forest in large areas is not easy
through field survey or by means of aerial photo
interpretation. However, satellite data with their
advantages such as synoptic view, revisit frequency,
constant spatial resolution, enhanced spectral
resolution and automatic analysis capability have
created a high potential in forest classification and
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forest-resources estimation. The present study
explored the usefulness and relative efficiency of
different standard classification techniques in forest
classification using IRS satellite image. The study
also assessed the relative advantage of the Spectral
Mixture Analysis (SMA) model over the standard
approaches. From the previous studies it was
understood that the SMA model runs better on
satellite images with higher number of bands and a
few studies have already been executed with
Landsat ETM+ satellite images. But present
research also aimed to know the applicability of the
SMA with limited band satellite image like IRS
LISS TII. As described earlier, data of only three
comparable bands — green (0.52-0.59 pm), red
(0.62-0.68 um), and near infrared (0.77-0.86 pm)
were used for digital analysis. The short-wave
infrared band (1.50-1.70pm) was not included in the
SMA model due to mis-registration with the other
three spectral bands of LISS TIT data. Further more,
to make the image more simplified and to reduce the
influence of greater number of features we removed
the spectrally  distinguishable features  like
agricultural lands and water bodies from the image.
The resultant masked image was used for further
digital processing. The SMA is a material-based
promising image analysis process that allows
extraction of subpixel level accurate quantitative
information. Classification of image using pixel-
level classification leads to inaccuracy due to the
presence of a number of land-cover classes within a
single pixel. Using the SMA approach, the spectral
variability in a multispectral image can be modeled
by mixtures of a small number of surface materials
with distinct reflectance spectra (endmember).
Unlike supervised, unsupervised and NDVI based
image classification, the SMA did not follow the
pixel-wise clustering of similar spectral signature.
Rather, it was able to consider each pixel
individually and assess the presence of proportion of
selected endmembers. Selection of endmember is a
vital component in running the SMA model. Pure
endmember selection is often difficult and the
process passes through a number of iterations till the
independent endmembers are selected. Within the
present study the endmembers were selected
manually based on Principal Component Analysis
(Bateson and Curtiss, 1996). Since we selected three
endmembers (dense forest, sparse forest and open
bare soil), the scatter plots of the bands helped in
locating the purest endmembers by taking the
extreme corner pixels of the triangle. These scatter
plots were generated in iterative manner to get the
purest pixels within the vertex zone of the triangle.
This ultimately helped in generating the high-quality
fraction images. The SMA produced fraction images

that were pixel-by-pixel measures of the percent
composition for each endmember in the spectral
mixing model. The results described above showed
that the SMA technique was able to generate more
accurate areal estimates of the endmember classes,
matching the field verified data with higher
accuracy. For field verification the pixel values of
satellite data were matched with the values of
ground truth radiometer data of same co-ordinate.
Since supervised, unsupervised and NDVI based
methods were based on classification of entire
pixels through predefined classification schemes,
they caused a “rounding-off error”, often producing
too high or low estimates of land cover classes due
to the inability to distinguish at subpixel level. The
SMA technique proved to generate higher accuracy
in forest classification and provided a more realistic
areal estimate of forest type rather than a patchy
output of traditional image classification methods.
There is a potential to improve the output by
selecting more accurate training samples for
endmembers. The results could be validated using
higher number of field verified information.
Although in this research a liner model has been
considered for the spectral mixture, it may not
follow the linear relation always, and in that case a
non-linear model has to be framed.

6. Conclusions

Conventional  remote  sensing  classification
methodology, as generally applied in forestry is
based on qualitative analysis of information derived
from “training areas” (ground-truth) or through
clustering of pixels with similar spectral signature.
This has certain disadvantages in terms of time and
cost required for training area establishment, as well
as to ensure higher accuracy. Unlike the
conventional qualitative approach, the SMA follows
the physical based classification at subpixel level
and this approach is readily applied and replicated
by others working in distant comparable
environmental regions. Furthermore, by reporting
endmember characteristics and locations and
applying the SMA to generate endmember fraction
images, the researcher can define classifications
grounded on physical measure of the Earth’s surface
(i.e. reflectance) and based on the types and amount
of materials present. Results indicate that the SMA
approach in mapping forest composition and the
corresponding areal estimates is one of the best
classification methods due to its ability to produce
fractions representative of subpixel components
directly related to forest tree type and relative area.
Although the analysis used a spectral unmixing
technique based on the assumptions of the linear
mixture model, the mixture proportions and area
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estimates that were collected matched well with the
available field information and the published result
of the Forest Survey of India. This suggests that the
SMA technique based on the linear mixture model is
etficient for vegetation mapping. Furthermore, areal
estimates from the SMA had higher accuracy when
compared with the results from traditional
supervised, unsupervised and NDVI based
classification approaches that were used to discrete
classification schemes. Accuracy could be further
increased through selection of pure training sites
and the result can be more accurately validated with
sufficient number of field verification by increasing
the frequency of ground truthing by using ground
truth radiometer. This study gave emphasis on
evaluating the potentiality of the SMA model in
case of IRS-ID LISS III image with fewer spectral
bands. Various studies have been carried out on
application of the SMA technique on Landsat
ETM+ (higher number of bands) images. However,
very limited studies have been performed regarding
usability of the SMA model on images with fewer
bands such as the IRS LISS TIT images. The results
suggest that the SMA technique based on the linear
mixture model is an adequate means of land-cover
mapping not only for Landsat ETM+ images of
large number of bands but also for multispectral
images like IRS with limited bands. The outcome of
this analysis can be used effectively for several
vegetation and environmental analyses like forest
growth model, environmental monitoring models,
landscape models and different policy-making
decisions. In recent years, all over the world there is
a major concern over environmental degradation
including global warming (Townshend et al., 1994).
Forests are an important component of the global
carbon cycle as carbon dioxide is one of the key
ingredients in photosynthesis. In view of the above
importance of accurate forest mapping, the high
precision technique of the SMA will provide higher
accuracy also in carbon cycle modeling.
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