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Abstract

The shortwave infrared (SWIR) bands of the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) target OH and CO;  absorption features in the 2 um region, in carbonate minerals
and hydrothermal alteration minerals such as alunite, kaolinite, and calcite. We modified the Spectral Angle
Mapper (SAM) method in order to use ASTER SWIR data to map hydrothermally altered rvocks. The new
method (Modified Spectral Angle Mapper: MSAM) provides a mineral index that is insensitive to the grain
size of minerals and topography. The MSAM method can avoid misidentification due to mixture of the target
mineral with different materials such as vegetation. The mineval index estimated from the simulated ASTER
SWIR bands using the MSAM method shows greater variation among analyzed minerals than that obtained
using the original SAM method. The mineral index images derived using the MSAM method exhibited a clear
boundary between areas of contrasting mineralogy in the Cuprite region and Northern Grapevine Mountains
region, this vesult is consistent with a previously published geologic map and hyperspectral data. Further
investigation by the MSAM method identified several types of hvdrothermal alteration zones associated with
porphyry ore deposits near the Yerington District, Nevada. These rvesults demonstrate the usefulness of

ASTER SWIR data and the MSAM method in terms of lithologic mapping.

1. Intreduction

The Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) is a multi-spectral
imaging instrument with a high spatial resolution
onboard NASA's Terra spacecraft that was launched
in 1999 (Yamaguchi et al., 1998). The ASTER
instrument has three spectral bands in the visible
and near infrared (VNIR) regions, six in the
shortwave infrared (SWIR) regions, and five in the
thermal infrared (TIR) regions (Table 1). ASTER
has a swath width of 60 km, which is larger than
that of an airtborne imager such as AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer;
http://aviris.jpl.nasa.gov/). has  already
covered most of the land surface of the Earth with a
spatial resolution of 15 m in VNIR bands, 30 m in
SWIR bands, and 90 m in TIR bands. Such high
spatial resolution multi-spectral images have a
variety of applications such as in geology,
agriculture, and in land use classification. The
SWIR bands are especially useful in mapping
hydrothermally altered rocks that contain clay and
carbonate minerals, as these minerals have

diagnostic spectral features in this spectral region
(Figure 1). Various approaches that make use of
multi-spectral images have been proposed to
discriminate surface rock types, including spectral
band ratios, spectral indices, and the spectral angle
mapper (SAM) method. Band ratios are a simple
approach and represent the most widely employed
data-processing method; they have been used since
the early stages of remote-sensing analysis (e.g.
Rowan et al., 1976 and Abrams et al., 1977).
Spectral indices are similar to principal component
analysis (PCA) in the sense that both are orthogonal
transformations of multi-spectral data, measuring
the degree of similarity of spectral patterns by
defining transform axes to represent specific
spectral patterns  of interest (Jackson, 1983).
Yamaguchi and Naito (2003) proposed spectral
indices for the discrimination and mapping of
surface rock types by using the five SWIR bands of
ASTER. This method was successfully applied to
ASTER data from Cuprite in Nevada, USA
(Yamaguchi and Takeda, 2003).




Table 1: Specifications of the ASTER instrument

Band Spectral range Spatial resolution Quantization
{(um) {m) levels (bit)
1 0.52-0.60
0.63-0.69 <
VNIR 3N 0.78-0.86 '3 ;
3B 0.78-0.86
4 1.600-1.700
5 2.145-2.185
6 2.185-2.225
SWIR 7 2.235-2.285 30 8
8 2.295-2.365
9 2.360-2.430
10 8.125-8.475
11 8.475-8.825
TIR 2 8.925-9.275 2 12
13 10.25-10.95
14 10.95-11.65
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Figure 1: (a) Reflectance spectra of carbonate and
clay minerals from Speclib Ver.5a, (b) Simulated
ASTER SWIR spectra of the minerals listed in (a)

The SAM method measures the degree of similarity
between image spectra and reference spectra by
calculating the angle between spectra, treating them
as vectors in n-space (Kruse et al., 1993a).

similarity between the target material and a
reference material (Kruse et al, 1993a). The
reference spectrum is derived from field or
laboratory measurements or from pixels in a spectral
image. The SAM method measures the degree of
similarity by calculating the angle between the two
spectra, treating them as vectors in n-space. In the
SAM algorithm, the spectral angle (8) is defined as




the arc-cosine of the dot product of the vectors of
the target mineral (7) and the reference mineral (R):

=cos™ T-R
I7|R|
Equation 1

The angle derived from the SAM method has a
range of 0 to /2, and is inversely proportional to the
degree of similarity of the spectra. A smaller angle
indicates greater similarity to the reference material.
To ensure that the derived value is directly
proportional to the degree of similarity, we have
defined the mineral index (MI) as follows:

AMlzl—i

%

Equation 2

Since the angle between two vectors is independent
of the vector length, the SAM method is insensitive
to the gain factor that arises due to the effects of
topography and solar illumination.

3. Spectral Mapping using ASTER SWIR

Hydrothermal alteration minerals such as alunite or
kaolinite and carbonate minerals such as calcite
generally have a strong absorption in the 2.1-2.4
um region due to the presence of OH™ and CO5*".
Figure 2 shows the spectral response of typical
phyllosilicate and carbonate minerals to the ASTER
SWIR bands (Bands 4 to 9). Carbonate minerals
such as calcite and dolomite exhibit diagnostic
absorption in Band 8, while other minerals have
absorption peaks in Bands 5 or 6. In Band 9, calcite
and dolomite show higher reflectance than other
minerals. Reflectance is highest in Band 4 for all
minerals. As stated above, the SAM method
measures the degree of similarity between the
spectral patterns of reference and target minerals.
Therefore, it is desirable that the spectral pattern
used in the SAM algorithm exhibits a large degree
of variation among the analyzed minerals. In this
study, we used Bands 5 to 9 for calculating the
spectral angles. The reflectance spectra of rocks and
minerals changes according to their grain size, even
for rocks composed of a constant grain size. The
spectral variation of rocks and minerals in response
to grain size was evaluated by Hunt and Salisbury
(1970, 1971) and Hunt et al., (1971). In these carlier
studies, rocks and minerals were generally found to
have higher reflectance and a shallower (flatter)
depth of absorption with decreasing grain size.
Figure 2 shows the spectral responses of calcite and

dolomite to the ASTER SWIR bands for various
grain sizes, as simulated from the spectra of Hunt
and Salisbury (1971). The reflectance increases and
shows a flatter spectral pattern as the particle size
decreases, indicating that the vector to be used in
SAM calculations changes in direction with
variations in grain size; this result in a different
spectral angle for different grain-sizes within the
same mineral class, potentially leading to
misclassification by the SAM method. Minerals can
also be misidentified if they are mixed with
vegetation; this misidentification arises due to their
spectrally flat pattern in a short wavelength infrared
region and the subsequent effect on the vector used
in the SAM algorithm as outlined above. Figure 3
summarizes the mineral indices for carbonate and
hydrothermal alteration minerals of various grain
sizes. In several cases, the variation in index values
among different grain sizes of a particular mineral is
larger than that among different minerals (e.g.
Figure 3a). As mentioned above, the spectral pattern
of the ASTER SWIR bands becomes flatter with
smaller particle size.
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Figure 2: ASTER spectra for (a) calcite and (b)
dolomite for various grain sizes. The absorption
depths around Band 8 become shallower as the
minerals become finer-grained. Data from Hunt and
Salisbury (1971)
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Figure 3: Mineral indices for carbonate and clay
minerals of various grain sizes estimated using the
SAM method. (a) Alunite index, (b) kaolinite index,
and (c) dolomite index. Original data from Hunt and
Salisbury (1970), Hunt and Salisbury (1971), and
Hunt et al., (1971)

This wend leads to a greater degree of similarity
between calcite and dolomite and other minerals
(the spectral angles become close to an angle
between the reference mineral and the optimized
material with a flat spectrum), making it difficult to
distinguish the target mineral from other minerals
using the mineral index defined by the SAM
method. To remove the effect of grain size and
contamination of other materials such as silica (as
found in sands) on the spectral angle, we introduce a
new spectral parameter, T’, which is derived from
the spectral reflectance (T) and the average
reflectance of the spectrum (7, ):

T (T —ZTi'
i mj’( 7 )

T'ij = T w N

Equation 3

where 7 is a band number (i = 5-9), j is a pixel
number in a spectral band image, and N is the total
number of bands (N = 5 in this case). Figure 4
shows the modified spectral patterns (77) for the
calcite spectra shown in Figure 3. The samples with
different grain size exhibit a similar pattern,
indicating that the grain size effect was successfully
suppressed. In a vector space, T’ deviates from a
vector Ty, which has a flat spectral pattern of Tm,
and is perpendicular to T (Figure 5).
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Figure 4: ASTER spectra of (a) calcite and (b)
dolomite in Fig. 3 derived from Equation 3. The

spectra are scaled relative to the average reflectance
Tn

Band 1

Figure 5: Schematic relationship of normal spectra
(Tn) and residual spectra (Tn’) in a vector space
(consists of three bands). MSAM calculates the
angle (8”) between T1’ and T2’, while SAM
calculates the angle (8) between T1 and T2
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Figure 6: Mineral indices of carbonate and clay
minerals of various grain sizes estimated using the
MSAM method. (a) Alunite index,(b) kaolinite
index, and (c¢) dolomite index. Original data from
Hunt and Salisbury (1970), Hunt and Salisbury
(1971), and Hunt et al., (1971)

The angle between T and T, decreases as the grain
size decreases (approaches a flat spectral pattern);
however, T’ does not change its direction in
response to variations in grain size, although its
length is reduced. The same principle can be applied
to minerals mixed with vegetation (or soils) as they
have a spectrally flat pattern. By using 77 instead of
T, we can estimate the angle between the target and
reference minerals independently of grain size and
free from contamination by vegetation. The MSAM
method is also insensitive to the effects of solar
illumination and topography as with SAM. In our
algorithm, the vector space is expanded to the
negative region, whereas in the original SAM
method it is restricted to the positive region.

As a result, the spectral angle derived from the
MSAM method has a range from 0 to m,
corresponding to a range from —1 to 1 in the mineral
index. Table 2 compares the mineral indices of the
reference spectra (Figure 2) for the original SAM
method and the MSAM method. The results derived
from the MSAM method show a greater variation in
each mineral index than those derived from the
original SAM method, indicating that the MSAM
method is more capable of discriminating between
different minerals. Figure 6 shows the mineral
indices for the samples used in Figure 4, as
estimated using the MSAM method.

Alunite Index by MBAR

1 a
N =] &
0.8 -
_g o ®
£ g8 -
o
£ :
= b
g o
O-5 i v
0.2 O-Tdpm =
74-250 pm ®
o 2801200 pm o ) )
[ 20 4G 1] B0 100
Vegetatlon, %
Alunite index by SAM
1k ) b
o £
2 oot . It
% ] . J g
E b t k-
oL
o8 0-5 jm
" G-FEpum ¥
T4-250 um  «
2506-1200 wm bt
[sA) . -
& 20 40 &3 B0 100

Vegetatlon, %

Figure 7: Comparison of alunite index between the
indices from (a) MSAM and (b) SAM in response to
the change in degree of vegetation mixture (0-
100%) with the mineral

Compared to the indices estimated by the SAM
method (Figure 4), the amount of variation in index
values among the different minerals is larger for all
indices. In addition, the amount of variation in index
values among the different grain sizes of a particular
mineral is smaller than that among different
minerals, indicating that the MSAM method is able
to successfully counter the effect of grain size.
Figure 7 compares the result of (a) MSAM and (b)
SAM when the minerals are mixed in with varying
amounts of vegetation. The MSAM method exhibits
a higher value for the target minerals than for
vegetation, whereas the SAM method shows a lower
value for the target minerals than for vegetation.




Table 2: Mineral indices estimated using MSAM and SAM

Reference Minerals Mineral Indices by MSAM

Alunite Kaolinite Calcite Dolomite Montmorillonite Muscovite
Alunite 1 0.531 -0.249 -0.477 0.071 0.039
Kaolinite 0.531 1 -0.300 -0.445 0.226 0.436
Calcite -0.249 -0.300 1 0.732 0.143 0.034
Dolomite -0.477 -0.445 0.732 1 0.179 0.046
Montmorillonite 0.071 0.226 0.143 0.179 1 0.563
Muscovite 0.039 0.436 0.034 0.046 0.563 1

Mineral Indices by SAM
Reference Minerals

Alunite Kaolinite Calcite Dolomite Moentmorillonite ‘ Muscovite
Alunite 1 0.937 0.859 0.865 0.873 ‘ 0.885
Kaolinite 0.937 1 0.863 0.875 0.896 ‘ 0.932
Calcite 0.859 0.863 1 0.964 0.889 ‘ 0.894
Dolomite 0.865 0.875 0.964 1 0.902 ‘ 0.910
Montmorillonite 0.873 0.896 0.889 0.902 1 ‘ 0.938
Muscovite 0.885 0.932 0.894 0.910 0.938 ‘ 1
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Figure 8: Mineralogical map of the (a) Cuprite region (from Clark and Swayze, 1996), and
(b) NGM region derived from AVIRIS data (from Kruse et al., 1993)
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4. Mapping at Cuprite and the Northern Naito, 2003). Sections of Tertiary volcanic rock in
Grapevine Mountains using ASTER SWIR Data this area were intensively altered during the Middle
To assess the applicability of the MSAM, method to Late Miocene. The altered rocks are termed (from
we have applied it to ASTER SWIR data acquired most highly altered to least altered) silicified,

on June 29, 2004 for the Cuprite and Northern opalized, and argillized. The dominant minerals are
Grapevine Mountains (NGM) regions of Nevada, quartz in the silicified areas; opal, alunite, and
USA (Figure 8). kaolinite in the opalized areas; and kaolinite and

montmorillonite in the argillized areas (Abrams et
4.1 Geologic Setting al., 1977 and Kruse et al., 1990). Clark and Swayze

The Cuprite mining district is a major test site for (1996) undertook detailed mineralogical mapping of
evaluating the mineralogical mapping capability of this area using the AVIRIS instrument (Figure 8a).

airtborne and spacecraft sensors; favored for its The NGM site is located approximately 50 km
sparse vegetation coverage and variety of rock southwest of the Cuprite district, near the border of
types, including volcanic rocks and sedimentary Nevada and California. Precambrian bedrock is
rocks such as limestone, sandstone, shale, and exposed in this area (Moring, 1[986). The

gypsum (e.g., Kruse et al., 1990 and Yamaguchi and Precambrian units include limestone, dolomite,




sandstone, and their contact metamorphic
equivalents. Mesozoic plutonic rocks occur to the
east of the Precambrian units, while Tertiary
volcanic rocks are distributed to the north, west, and
south. Kruse ef al. (1993b) created a mineral map of
this area using AVIRIS data. In their map, calcite
and dolomite were detected within the Precambrian
units, while sericite was identified in the Mesozoic
plutonic units to the southeast (Figure 8b).

4.2 Results

Figure 9 shows mineral index images for alunite (a
and d), kaolinite (b and ¢), and muscovite (¢ and f)
in the Cuprite district, as derived from ASTER
SWIR data. Figures 9a-c shows the results obtained
by the MSAM method whereas Figures 9d-f shows
those obtained by the original SAM method. In each
image, the_maximum index value is stretched to
white and 0 to black for MSAM, whereas the
maximum index value is stretched to white and
minimum to black for SAM. In the case of alunite
indices, the indices derived by the MSAM method
range from 0 to 0.922 whereas the indices derived
by the SAM method range from 0.89 to 0.97. The
alunite index from the SAM method is high not only
in the alunite hills {(0.94), but also in other alunite
poor areas (mostly, >0.91). In contrast, the index
from the MSAM method shows a low index value
(<0.2) in the alunite poor area. For example, it is
lower than 0.1 at the north of Cuprite (B in Figure
9a), and is less than O near the south border of the
image (C in Figure 9a). Mean index values for these
areas are summarized in Table 3. As a result of
having large variation, an image derived by the
MSAM method can exhibit a clear distribution of
the target mineral. The kaolinite and muscovite
images also have large variation (Table 3) and
exhibit clear distributions (Figures 9b, ¢, e, and f).
Figure 10 shows a color composite image consisting
of the alunite, kaolinite, and muscovite indices. In
the image, the alunite index is assigned to the color
red, the kaolinite index to green, and the muscovite
index to blue. We set a threshold value of 0.6 for
alunite and 0.5 for kaolinite and muscovite. Only the
pixels above threshold values are extracted and

displayed on the image. Since the spectral pattern of
alunite is similar to that of kaolinite, the kaolinite
index yields relatively high values in alunite-rich
arcas, and vice versa (Figures 9a and b). The
distribution of minerals is consistent with the

mineral map in Figure 8, indicating that the
threshold values worked well for extracting target
minerals. Figure 11 compares the dolomite indices
in the NGM region estimated by using the MSAM
(Figure 11a) and SAM (Figure 11b) methods.

Figure 9: Mineral index maps of the Cuprite region
obtained using (a—c) MSAM and (d—f) SAM; (a and
d) alunite index, (b and e) kaolinite, and (¢ and f)
muscovite. Each image was stretched using
maximum and 0 for MSAM, and maximum and
minimum for SAM

Table 3: Mineral indices determined for the Cuprite region

A (5%5 pixels) B (10x10 pixels) C (10x10 pixels)
MSAM SAM MSAM SAM MSAM SAM
Alunite Index 0.76 0.94 0.01 0.91 0 0.90
Kaolinite Index 0.58 0.95 0 0.92 0 0.92
Mouscovite Index 0.03 0.89 0 0.89 0.09 0.89




Figure 10: Color composites of mineral index maps of the Cuprite region obtained by using Modified SAM.
The alunite index was assigned to the color red, kaolinite to green, and muscovite to blue. A threshold value
of 0.6 was applied to the alunite index, and 0.5 to the kaolinite and muscovite indices

Figure 11: Dolomite index maps of the NGM region obtained by using (a) MSAM and (b) SAM. Each image
was stretched using maximum and 0 for MSAM, and maximum and minimum for SAM

Images are stretched in the same manner as applied
for Figure 9. The MSAM method shows a high
index value (>0.7) in the dolomite area and a low
index value (<0.2)for the non-dolomite area, while
the SAM method shows an average value of 0.98 for
the dolomite area and 0.95 for the non-dolomite
area.

The MSAM method shows a large difference in the
dolomite index between the dolomite area and the
non-dolomite area. Figure 12 shows the distribution
of calcite (colored red), dolomite (colored green),
and sericite (colored blue) derived from the indices
calculated by using the MSAM method.




Figure 12: Color composites of mineral index maps of the NGM region obtained by using MSAM. A
threshold value of 0.6 is used for calcite and dolomite, 0.4 for sericite
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Figure 13: Color composite image of the Yerington District generated from ASTER VNIR data (Red: Band
3N, Green: Band 2, Blue: Band 1). The dashed square represents the area shown in Figure 17

In this image, calcite and dolomite were extracted
using a threshold value of 0.6, while sericite was
extracted using a threshold value of 0.4. Dolomite
and calcite units including the 'calcite + dolomite'
unit (colored dark red) and the ‘weak calcite' unit
(colored yellow to orange) in the southwestern part
of the study area (Figure 11), are successfully
identified by the MSAM method. Patches of calcite
and sericite in the north- central and eastern part
(Figure 11) are also clearly identified.

The results obtained for the Cuprite and NGM
regions indicate that our new algorithm provides
enhanced spectral angle maps that enable us to
easily understand the distribution of minerals and
identify areas that exhibit higher content of that
mineral. We also conclude that ASTER data can be
used to discriminate between hydrothermally altered
and carbonate rocks, even though ASTER utilizes
fewer bands than hyperspectral sensors such as
AVIRIS.




5. Mapping of an Alteration Zone in the
Yerington District, Nevada

5.1 Geologic Setting

The alteration zone in the Yerington District is
located mainly between the Masson and Smith
valleys, west of Yerington City (Figure 13). Early
Mesozoic voleanic and sedimentary rocks are
exposed in the southern Singatse Range from east of
Ludwig to west of Mason (Figure 13). These rocks
include Triassic andesite and rhyolite and Late
Triassic to FEarly Jurassic pyroclastics and

limestone. Two Middle Jurassic plutons, the
Yerington batholith to the north and the Shamrock
batholith to the south, intruded the Triassic to Early
Jurassic volcanic and sedimentary rocks. The
Yerington deposits were inclined and rotated to the
west by about 90° as the result of Late Cenozoic
normal faulting and a small additional component of
pre-Oligocene deformation (Dilles, 1987). Tertiary
volcanic rocks occur to the north of the Jurassic
rocks, unconformable overlying the older geological
units.

Figure 14: Color composite image of the calcite index (red), dolomite index (green), and montmorillonite
index (blue) of the Yerington District. Threshold values of 0.8, 0.6, and 0.4 were applied respectively

Figure 15: Photograph of the silicified limestone area located on the east of Ludwig (Figure 13)




5.2 Results

Figure 14 shows a color composite image of the
study area, in which the areas with a calcite index
above the threshold value of 0.8 are colored red; a
dolomite index above 0.6, green; and a
montmorillonite index above 0.4, blue. Calcite and
dolomite are identified (colored yellow-orange) in
the south-central part of the image in the area
located between the northern and southern Mesozoic
batholiths near Ludwig (Figure 15). These minerals
are also found in small patches to the northeast of
the Triassic andesite and rhyolite units east of
Ludwig, as well as around Quaternary basalt in the
southeastern cormner of the image. In the calcite
index map derived by the SAM method, the
vegetated area appears as high as the calcite-rich
area near Ludwig (Figure 16). In contrast, the
MSAM method exhibits a lower value in the
vegetated area than that in the calcite-rich area,
indicating that the MSAM method avoids mis-
identification of minerals.

Figure 16: Calcite index map of the Yerington
District obtained by using (3) MSAM and (b) SAM.
Each image was stretched using maximum and 0 for
MSAM, and maximum and minimum for SAM.
Threshold value of 0.8 was applied to the index
from MSAM, 0.95 to the index from SAM. Arrows
indicate the location of vegetation rich area

The distribution of calcite interpreted from the
mineral index map agrees well with the geologic
map of Dilles (1987). Montmorillonite (colored
blue) is identified in the upper left corner of Figure
14, where the Yerington batholith is indicated on the
geologic map. Akiyama et al. (1989b) also reported
montmorillonite in this area, based on spectral
profiler mapping using GERIS data. We further
investigated the Yerington deposits in the southern
part of Buckskin Range, northwest of Smith Valley
(Figure 13). This area comprises Mesozoic intrusive
and sedimentary rock (Stewart and Carlson, 1977).
We identified several different hydrothermal
alteration minerals by applying the MSAM method
to the ASTER SWIR data. Figure 17 shows a color
index map of this region generated by assigning the
alunite index to red, kaolinite index to green, and
sericite to blue, with threshold values of 0.4, 0.5,
and 0.6 respectively.

Figure 17: Color composite image of the alunite
index (red), calcite index (green), and sericite index
(blue) for an area near the Buckskin Range (dashed
square in Fig. 13). Threshold values of 0.4, 0.5, and
0.6 were applied, respectively




Sericite is found in the lower central area of the
image, while kaolinite and alunite occur around
sericite-bearing rocks. According to Creasey (1959),
hydrothermal alteration associated with porphyry
copper deposits can be divided into four types:
potassic  alteration, phyllic alteration, argillic
alteration, and propylitic alteration. Alunite and
kaolinite are classified as representing argillic
alteration, while sericite represents phyllic
alteration. The distribution of argillic and phyllic
minerals in Figure 16 indicates a zone of
hydrothermal alteration associated with a porphyry
ore deposit that resulted from the ascent of
magmatic fluids from deeper levels (Lowell and
Guilbert, 1970).

6. Summary

We modified the SAM algorithm and applied it to
the ASTER SWIR bands. The new method
(MSAM) estimates the angle between the vectors of
two reflectance spectra, from which their mean
reflectance values have been subtracted (see
equation (3)). The mineral index derived by the
MSAM method has a greater range (—1 to 1) than
that derived by using the original SAM method (0 to
1), and it appears low enough for different materials
including vegetation to discriminate from the target
mineral using a threshold value. Vectors of the
materials do not change their direction in response
to variations in grain size, although their lengths
vary; consequently, mineral indices derived from
the MSAM method show a strong correlation with
an abundance of these minerals and are insensitive
to grain size and topography. In the Cuprite district
and NGM region, the distribution of hydrothermal
alteration minerals and carbonate minerals derived
from ASTER SWIR data by using the MSAM
method is consistent with the results of mapping
using hyperspectral data. Carbonate minerals and
montmorillonite were successfully mapped by the
MSAM method in the Yerington District; the
obtained results were consistent with the results of
field mapping. We also identified several types of
hydrothermal alteration associated with porphyry
ore deposits within a Jurassic intrusive unit in the
southern Buckskin Range, northwest of Smith
Valley.

7. Conclusion

The strong agreement between our mineral mapping
results in the Cuprite, NGM, and Yerington regions
and those of previous studies undertaken using
hyperspectral data demonstrates the usefulness of
ASTER SWIR data in terms of geological mapping,
and also demonstrate that our new method is
applicable for the mapping of hydrothermally

altered rocks. The application of the MSAM method
can be extended to the visible-near infrared (VNIR)
bands; this will enable more detailed surface
mapping, including the mapping of iron oxides.
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