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We present a methodology for estimating the porameters for cop assimilation stedies from satellite images,
The procedure i3 optimized with an evoiutionary search technigue. A Genetic Algorithm (G4) operates weil in

Mph-dimesrional ron-linear

dnmains. However, iz parameters mairt be set in adveoree. In thiv paper, we sire

a veli~organizing (Zd, in whick the imitial paraweles are penerated and oxvigned midomatically. Muwerical
experiments were conducted to analyze ihe performance of the methodology, and our method's effectiveness
on both symthedle and real sateilile dmin war proven. This study shows thai the self-organizing GA
methodoiogy ix belter thar the conventional (34 approach in sstimaling crop assimilation,

1. Introduciion

Informetion related t0 B cTop such B8 i growth,
water etress, doration, end dmte of cmergence are
deta provides meeful miormation over a loge ares.
Herides obtaining and neing more direct ochaervable
data (e.p., land cover, leaf arem index, slevatdon, and
evepoirmmspirstion}, 8 chellenge for the fuinre is
how to obtain non-wisible dobn (e.g, woil
characteristics, proundwater depth, amd fedpation
practices) from ssielliic imeges. Ince (Ioes and
Droogers, 2002a) (hes and Droogers, 2002b)
proposed an lnverse modeling echemw W obbudn
non-vigible dets throngh assimilation of crop model
detn with astellite-cbservabls dats. {Chemin and
Honde, 2006) implemetitsd real-coded panetle
dlgorithms using deta eesimriletion to foee epatial
comtent of higher epatial reschotion (HSR} with
bvporel condent of lower spatiel resolution (LER)
matellite images. The genetic algorithm (GA) is an
evolutionary search technique (Holland, 1975) that
uses the mechanism of netural selection to search 8
decision space for optimsl sclutions. Ome of ite
advamnges is that it can operate well in high-
ditneeesionial ton-lhivsse domudns, However, Its madn
d:fﬁuﬂt]rmmdemdmgmnppmmmof
perameters  (Cropinesk et al, 2000% inchuding
population skze, mmmber of poierations, selection
preasmre,  Cfrodsover  probability, | muistion
probability, etc.  Sevanl —mebwewohtionary
opproaches  (Frejsleoben wod Meex, 1996)
(Grefenstette, 1985) (Lee and Takagi, 1994) have
bean wied to detenmine the GA parameters for
finding sohutiony of difforent evobatlcuey problemns,
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The hievarchical GA approsch (Abmma, 2003}
generates a eelf: izmg A (SOGA} (Jeong end
Lee, 1998} (Fhang et al, 2009) that modifies the
mutstion probability, crosesver probability, mmd

ion size of each ion. Perameter-less
GA (PLGA) (Harik and Lobo, 1999} (Lobo and
Goldberg, 2004) {Pelikan mmd Lobo, 1999) i B sob-
clane of S03A (Mitchell, 2005). It has no mmtation,
504 rrogsever probability, and selecton pressurs,
mdndmbluﬂmpopuhhonmmng:mmsnnl
of fincex from B competing population runming
eimmlatecusly. PLGA assipne GA  pamametrs
antomatically. The work in reference (Chemin emd
Honda, 2006) pute ane (GA ineide each itwwtion of
ahother GA. Paranweterizing theste twn Interterined
GAs sppears to be an evolutionary problem. PLGA
meete the antailed requirememis and is the bagie of a
new  asgimilation methodolopy, The new
methodology implements PLGA with the exigtimg
crop aegimilation method proposed in ref. {Chemin
and Honda, 2006), for soomatlc peneration of
guitable GA poameierns. We conducied several
experiments and found that our method wae better
than the conventlonel GA spproach In ssshnilation
expariments uead the datanst from ref. (Chemin and
Hoids, 2006} ot & tice Held otopy, prown fromm
December 2001 to April 2002, and located in
Suphan Buri, Central plain, Thailand

2. Related Work
Many stixdise have used data aseimilation

tachniques
o solve diffset parsmeterization soarch problams
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(Chemin and Honda 2006). Ths, choosing aptimal
pasmetay Ke thode GAS 1 i Inportart e,
Yirioms metsevohitionary approaches mnd adapiive
algorithme have hoan devised for finding optimal or
sub oprtiinal GA patwneters (Fredslebet aid Metz,
1996) (Grefenstette, 1985) {Lee md Takngi, 1994) .
The mestsevolotionary approach wae used in ref
{Gmlmlgmmdﬂmmﬁapupﬂam
gize, croms-cver probability, mmutaion rHEE,
generation gap, scaling window, and aslection
statepy, The metasvolilonay appooech wus also
maed in ref  (Freisleben end Merz, 19396) for
siudying the eoffect of Jdynamically adapiive
popoletion size, aossorv, ol toutation tate oh Do
Jeng's sct of test fimetions. The FLGA spproach we
present here shonld be ueefnl for solving the GA
paremeier seloction problerns in the exdsting work
{Chemin end Honds, 2006).

2.1 Tha Simulation Model

The simmlation medel in ref. (Chemin and Henda,
zmmmmmmmmmmummw
pammeters  derived from astellite  imsges.
Specifically, it neca a crop model and assimilation to

{ETa) velueca are & combination of soil eveporation
and plant transpirstion values. ETh dets are used a
Enown valnes and can be derived from satellite
fmages by uwsing the Surfave Balmmce
Algorithm (SERAL) (Bastinanasen, 1995). ETa data
for the agme location (n varicus dates enzhle crop
parameters to be predicted for that location. Satellite
images with pixel sives larger than 1 Im generally
have a daily retnm period over the same aren of the
world, thus cnsbling ETs maps with such pixel size
to bc made cveryday. Hence, we can analyze
agticultural activitles In that ezl amg,
However, a mnaller pixel size ia abill required for &
ameller area. In thet case, we need high-resohdtion
gntellits iomges of the game location on various
dates. However, it & o difficnlt task to get high-
resolution images on even B weekly baxin. To
overcoms  fhis problem, the siowledon model
{Figure 1)} nsce a fusion of HSR mx] L8R images.
The ETa of an 1L.SR pixel is regarded as the avernge
ETs of HSR. Images,

High Tem@aral
H Lo resalution

v Tae it il

- :
th resa I'[-:In : Sat ":i?“
[ETa - ETa T35

[faranse

charging the
SWAT gt e | o
Parametars S‘JFE

~+{ Couble Layer GA {DLGA] [+

.f_._

—
Qptir iped
pararmelers

Figure 1: Hxisting Crop Assimilation Model
(Chemin and Honda, 2006)

Thus, the SR images cem be filled with the HSE
individuela o= put into the SWAP cop modecl
{Van Dam ct al, 1997) and produce a simmisbed
ETq (SimETa) for the satellite image ETy (SaETa)
of each oomesponding date. Thereafter, each
SimETa ip compared with SatETa dats and the
averagns differsnce 18 taken o be the assimilation
perfommance.

1
C e ';;::’{ET"M -Eﬁm)’

Equation 1
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Equation 3
Equatione {1} and (2) arw the cost finctione of HSR
i LSE. In {Bquation 1)}, ETa,ymps =nd
ETaggaprymax g respectively denote the St Ta and
SimETa olwained from gn HSR image of location
coondinate (xy) on date d€ [d;, ... , 4] In
(Bquetion 2), ETaymp indicates ﬂ:: SxiFTa
oblgihed fiom an LSE hnege takes on date DE
[DY; ..., D). p is the onmber of Tows or the nmber
of cohrmna in one HSR image. An HER imege
containg p* pixels for an ares precented by one pixesl
in an LR image. FI Pme) computes the
gverage SimETe of HER mages. The teisl
fitnees, F, ix defined in {(Equation 3). One pixGA ia
evahuated for each HSR pixel, gisd (Fqoation 1) i
used to calculate the cost. Hewever, 8 problem
arincs when celenlsting the cost in (Equation 2)
SimETa for LER containg p° pizels, and each of
these pinela conteins k individuals. Hence, we need
mmmmmmmufp’mmum
kp' individwale. The evaluation GA solves the
2} end fitnese of all individnals {Eqmation 3). The
piesl GA recroates individmls wshng GA opeatins
besed on the GOimegs. Good individoals, ie., those
with higher filneas, arc meleched for the pext
penstation,

1 ey = Mol 1) 2 11,1)

Beuation
JR:[IE“'M L= ﬁﬂ.IBn l‘({ﬂ,,fn}-. E{GM.I+1]]

Equation 5
2.2 Parameier-Less (4 (PLOA)
Sctting the GA parameters such as population size,
salection rate, crossover rabe, and rwptetion ek
umally requires & lot of experiments. To search for
piitable GA paremeters, we use the rules from ref
{Lobo, 2000}, whete the preset sl fived peloction
preseme E is 0.4 end the croasover probability P, iz
0.5. The typical relsticnship between populetion
pize and ceampaational time is ghown in (Figurs 2,
PLGA ie helpful in this siuetion becsmse it
sinmltaneonsly rone a nomber of GAs with fized

Ammphﬂhwﬂhamﬂpupu]ahmw
fastex then one with e large population. However,
ﬂnquﬂﬂynfﬁ:mlnhmuwuhrmhmuﬂﬂ

Conversely, 8 GA with a larper
pupﬂmnmadlmmmmpntahomlmThuB,a
mitshle or optimal balmmce hetween compuistion
tims snd population sre shonld be fonnd [Lobo,
2000).

golution 1
qualiby

# oversized
&/ O sopdlation

optimzl pepulation 5o

unders Fed populalian

Figure 2: mnmmmmmmq;m
and Computaticn Thne (Loba, 2000)

The way to eelsct 2 quitable population size is the
o get & stall size nitially and increass it by using
the following heuristics. Let G be the group of GA
processse neing eimilar (hA parametsre and i he the
indlcutor of the specific G. t is a positdve integer and
2. Frglh is the sverage fitnesg of G,

1) If the popmlotion slze of G; s N set the
pomilation gize of Gy, to 2N,

2y TIncrement the t-amray coomer at each step
(Loba, 20007, Table 1 shows i exnple of the
counter increment ayetem (with t=2).

3} The position of the most signifieant digit that
changnd during the imcement operaticn
indicates which G should be num.

4) IfF Gy > Foglh, dalete Gy,
Tabde 1: Exampls of t-array Connter Alporithm

Comntar | Mast Sigaificant Action
(ao =2} | Dight Chianged
-]
1 1 Tope 1 generation of G,
10 2 Roon 1 generation of G;
11 1 P 1 of
100 3 Feon 1 geweration of 7,
18] 1 R 1 peneration of &)
110 2 Fmn 1 generetion of &y
111 1 Fmn 1 generetion of G,
1000 4 Rn 1 ganeretion of Gy

The mules can climinatr the time penalty that
oecnered fior the overgized population in {Figure 2,
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Howerver, they are not applicable when 3 mnptation
operetor is used.

Thus, cur PLOA immplementation dosz not use
mitaticn oparator in crder to ensure converpencs of
the populations {Lobe, 2001).

3. Methndulogy

In the azsimilstion wodel presented i ref. (Chemin
anid Honde, 2006}, it ia relafively difficult to find
suitable population size and penecation number in a
all QA parameters is a challenging fase when two
GAs aw run hisrgrchically, Thus, the proposed
(Chemin and Honds, 20056} bit awhometically
goerates sultsble GA parameters (popolstion size
gnd generation mumbers). PLGA is spplied to the
the svaloation GA's performance 1s not elgrdficantly
affected by the sclection of GA pamameters. Let 8 be
1 pet of {popaize, genemmtion}  for
PLGA and let it be assigned 10 a specifle GAM (3n
existimg Crop Assimiletien Medel (Chewmin mmd
Honda, 2006)) for evalustion and 8.~ £2¥x%}. Asa
load-balaxing  strategy for the CAMs, the
generetion nmmber {x*) in 8, is asgigoed duch that
the prodoct of the populaion eize and generation
rernuing the some for sl PLGA populations, M 1s the
tota]l mmmber of populations in PLGA. We can
implement a PLGA populstion replascement
mechurdxrm ag in {Boguatlon 5). K tells us that at the
I* jteration, for cach consecutive population’s padr,
the new population B (Syw, 1) for ihe next
eraticen (H1) will bo croated nly if the mexinnom
average fitness population, Mikames i B{Sy1])
i3 deletod. The Max( ) futictich it {Bquatlon  4)
gived the maximnm finess populsation, end the Ry}
fanetion removes the population {with the minimnm
fimeas). The logical opaator = iv  the
“biconditional” operator, end ~ ia the logical “and™
operator. —* i the “implise® symbol and represents
that onty 8 troe expregsion on the left side canges the
expresgion on the right side to be true.

Cur PLGA acheme (Figure 3) rone  three
consecntive CAM, where i=1, 2, and 3. The steps
arc 83 followes:

1) Fimt, the moput filew bkx cech CAM; mm
created. The inprd fles contain the GA parameters
arcarding to the rales of PLGA,

2) Bach CAM, mns scveral timea (five times in
onr cass) and the avernge fitneex i3 generated.

The generstion mmmber in CAM, {1, x, md %) i
assigned from Largest t; amallest poprolation,

Table 2: The Comparison casea and decisions

Cemaparison

FunCAM, =

Remowve CAM, and create

FegCAM, 1
CAM,,, with 252 population
Fize.

F >

4. Reaulin

4.1 Experiment I: Settfng up the PLITA

We experimented on sipht GA parameters usad in
both the pixel GA and eveluation GA (Chemin end
pansrgtion  limit  (genergtion), probability of
crogsover  {pxover), probability of mutation
{prmitaticn), and in the evahition GA, populstion
gize (g popeize), genesstion Hmit (s geneeation),
probability of crossover {5_pzover), mnd probability
of muiation (s proatation). Figores 4 and 5 ehow the
evalmtion GA and the pixal GA fithess values of
chenging onc GA pammeter when all other sbove

parameters {except the ons to be changad) are fiwed
Lt Ie clear from the figuivs that the fitness valoes ae

affected by the parameters.
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Determining the best GA parameter combination is
alse e evolotionary problem. Thoe, FLGA is very
helpful in determining the best GA pammeter
combination, For ingtances in (Figure 4¢) (popeize of
the pixel GA ia fixed to 25), the filnese value doos
not chenge significantly as & resmlt of changing the
popsize of the evahuation GA. However, in (Figure
50) {(popsize of the evaluation GA i fixed to 1000),
the fimess value is significantly affected by the
popeize of the prixel GA. Thess findings lod us o

implement PLGA only in the pixe]l GA.
miTe ;g (Datr) = --:#nﬁmmmw}
Equation &
KRBTy o toe (IN) = simeBTa{ Dists)} + 1z - rbmeSTor{ D)
o m A Bond(-1,1)
Equation 7
A, - '_;_';g'[’_; ["ﬂﬂhm.n-m:ﬂ]]
Equation 8

4.2 Experimendt 2; CAM with PLGA on
Synithetic Dala

Four pixele worth of symhetic datn were created for
fhig ecperiment, Three differat pets of pasamebers
for Oround Water Level in Jennery (GWlem),
Oromd Weter Level i December {fWDkec), Date
of Emergence of Crop (DEC), Start ireigation (STS),
Time Extent of Crop (TEC) were generated from the
SWAP model (Table 3). The unite for GWian and
GWDee are cm, and the rest nee Dot of Year
{DOY). A given gene corresponds to e mlmown
crop parameter in the GA cvalustion. The other
patametes of the SWAP model wers taken from
ref. (Chemin and Honda, 2006). The SWAP model
was nm with three scts of inpat data {Sct!, Set?,
Sat’)imdhmnmdﬁrwm of yearly ETa
(ETe', ETe?, ET#’) output dats. We sclected 14
deten and their corresponding ETa dmts from
Jatary to Aptil (Tabls 3). Thres ssta (A, B, and C}
of four-pixe]l HSR imeges on four different dates
(X002/2/28, 20023715, 20023031, and 2002/4/21)
were cregind frorn the inpat data (Table 3). In set A,
all pixels, (pix 0, pix 1, pix 2, pix 3) werc made
from BETa'. In ect B, pix § and pix 1 were made from
ET#', while pix 2 and pix 3 were made fivom ETa?,
In get C, pix 0 and pix 1 were made from BTa!, pix
2 from ETa?, end pix 3 from ETa’. One-pixel LSK
imagms wete oeated I the zame way (oo lmage
for st A, one for ect B, and one for set C). The LSR
pixel war prodoced from the comesponding TSR
image pixels by using (Equation 6).

To malcs fhe deta more realistic, o small amennt of
noise wag added to the HSE. and LSE meges by
uring (Equation 7). n_pix in (Equation §) is the total
mumbee of HSR pivels, and 1 geoe in (Equation £)
is the aveilable mumber of gooes. Simipixk)
represents the simulated valoe of gene k iIn pix
mymber pirsdl ad  Syn{pixr k) repregents  the
gynthetio value of gene k in pix mumber pixel The
simmlsted arsimilstion corves for all seta (A, B, C)
for the HSE and LR imagee are impressive, In gll
fhree cagcs, the fitness velues meet the convergenos
requirement {0.1 cm/day). However, the suiimble
popeize and generation gre different in 911 cages,

Table 3: Crop pamameters and ETa values

InputData | Bet’ | Set® | Set”
GWim(vm) | 60 0 {E
GWDeo (vm) | 88 75 52
DEC (DOY) |8 10 12
STS (DOY) |25 30 62
TEC (DOY) | 108 120 | 142
Date ETa’ |EIrf |EIC
2002108 | 0328 | 0332 | 0332
20021715 | 0044 | 0044 | 0044
20001/17 | 0085 | 0035 | 0035
20071/27 | 0.084 | 0065 | 0.049
200272/08 | 0236 | 0222 | 0205
20022/16 | 0340 | 0332 | 0325
20022723 | 0342 | 0339 | 0338
2002228 | 0366 | 0364 | 0365
20023/13 | 0397 | 0395 | 0396
20023/15 | 0396 | 04256 | 0396
20023/29 | 0385 | 0402 | 0415
2002331 | 0449 | 0474 | 0.496
20024714 | 0079 | 0.100 | 0113
2002/4/21 | 0.035 | 0041 | 0.053

The miitsble popaize ia 1600 for sct A, 800 for sct B,
and 400 for get C, Next, the synthetic pixsls ware
penerated from Set!, Seff and Set’. We man the
gimmlation model mnder the sammption that its
acoutacy would be proven if the sinmilated owipute
and the Set', Se’, Set’ values were wimilar. The
simmlsted results {for onknown parameters values)
with stz A, B and C are presented in Figum &,
Egquetion 7 was used to calenlste the average aror
{(AEpm). In the care of act A, the AR, of cach
g value is ), Hewewer, in the case of st B (set
C), ABpn ia & {5.5). The LER image oovem a large
area (1000 m x 1000 m} with one pizel.
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PLGA model. The avernge genes mcan LUare £
deviaticars of the proposed and previoms CAM ig
26.4%.

4.3 Experiment 3: CAM with PLGA on Real Data
The toial mrea of Suphan Bor province i 5,358
pqure fometers. Iy map coniaine aroumd 5,358
plnlsumﬂﬂmmrmh:mn.?hmd]!udm
taken from ref. {Chemin emd Honda, 20085). The
LSR image wea 2 Terma-MODIS {1000 m x 1000 m)
wiphi-day product from 2002, The HER inagee were
Lendsat 7 ETM+LID (60m x 60m) stamderd one-
day products taken on 08® Jannary 2002, 142 April
2002 and Tema-ASTER () m x 50 m) ons-day
products teken o 16% February 2002, The SWAP
mode]l inpit files were the parme as those need in ref.

{(Chernin ard Heeda, 2006),

Following the suggestions in ref. (Chemin and
1000 and the maximnm generation was 1000 in the
evalustion GA, for CAMa with and withont the
PLGA model. CAM with the PLOA mode] xinrted
with a popalation zize of 23 for the pixel GA and a
cumover probability of 0.5, CAM without the
PLGA model need a fized populmtion of 25,
prseration mumber of 30, crosover protability of
0.8, mnd muistion probability of 0.05. Proper LSR
pizel meeimilstion dependre on the HSR pixele’
aaeimilption and the eveluaticn procedure to select
the pexfect oombination of HER. individwals to form
an ISR pixel Regending the cxisting crop
asgimilption mndel, the experimets on HSR pizels
bad consistent values for the simulated ETe deta.
‘We belicve thet the croesover and mutation valies
used in the evaluation GA were nol properly
condidered in the previcus implementstion {Chemin
and Honda, 2006). In the ourremt experiments we
varisd the cossover and ngiation probabilities in
order to obtein encugh diversity B in sctusl satellite
ETa duta. Figures 7, & and 9 present the effect of
CAM with PLGA {population of 200 and 30th
m]mmmlmmlmmufmzsm

=B SatETa
—4#— SimETa (CAM with PLGA)

Figure 7: The 25 HSR pixel (08 Jamuary 2002)

end the absence of proper ground weter information
for these periods made it hard for the evalnstion
model to estiate ihe appropriate assimilstion in
Figure 9. Figure 10 shows the ETe essimilation of
the L8R pixel.
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=il S5atETa

—4— SIMETa (CAM with PLGA)

Figure 8: The 25 HER pixel (16 February 2002)

12

—B—SatTa

== SmETa (CAMwith PLGA)

Figure 9: The 25 HSR pixel (14 April 2002)

The crop masimilation with PLGA performs better.
According to ref {Chemin and Honda, 2006), the
LSR differences were not eatisfactory in CAM
withont the PLOA meodel with coly twe HER
images hecmme the miny scaron starbed in the laxt
woek of April and fislde that wers underwater afher
mmgm]muqrﬂuwmﬂ:autunhmmﬂdbe
remedied with sn addiiensl HSR image that

acoqrate LSH ETa valnes. Fignee 10 shows the
cutput when en HER image from 14 April 2002 was
tddudtoﬂ::mpm.'lh:mmﬂmnmbeltﬂmﬂm
case, Another jmhlam is how to determine an
appropriste end genamtion nomber to
gimmlete the GA. PLGA can schve this problem by
finditg an appropriste populaticn and penesation
mumber within 8 given time frame.

‘”‘:-rrEl'a (CAM with PLGA)
= SirrET & (CAM withour PLGA)

TTa{rmidav)
5]

11 131 EiF] &1
Dates

Figure 10: The LSR ETa assimilaticn
curves by CAM
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Figore 11: The Process of Increasing Fitness

Figure 11 presents the prooess by which fitness was
increamed When CAM,; wae 10 generabicns, ite
averages fitness FCAM: wae sxcesdsd by
FongCAM,, the sverage fineas of CAM,. Thersfore,
CAM:; waa climinated and CAM,; wes nun. The
program  stopped when CAM, mached 30,
FonCAM, waa never overtaloen by the other avermge
fimesgce. Therefore, the population of 200 wes the
hest for the plven thne of the scperirent, 'We cogld
oot know thet infowmstion until we mn PLGA
Figore 12 presents the cudcomes of CAM with
FLGA with 3 population 200 and 30 paerationg,
The velnes are similar te those in ref.  {Chemin end
of the depth to groamd water, GWJan 1e about 60 cm
and GWDec ia about 50-80 om; these values me
typical of rice cropping arean. The optimized Date
of Emerpencs of Crop (DEC) 1s within the ranges of
2~9 DOY.
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Figmw 12: Target Outputs Generated from Proposed CAM with PLGA

The range of sowing dabes wae from the middle to
the etd of Decernber 2001, Thus, & 10 day
distribution is poszible. Btart Frigation Scheduling
(ST5) valmex were from Jamiary 13 to February 19
(15~30 DOY), The TEC value was betwoen 90129
DOY. DOYs of three and half montha are typical in
rice coltivation. However, sometimes the crop times

(Equstion %), Hare, i
individmals in CAM, =nd it iE compuied by
multiplying the rmmber of HER pixels with the

popralaticn size in the pixel GA. CAM(T) denctes the
compuistion time of the CAM process, or the
svahation of SimETa fur cne individual, We need a
comproter with 8 Xeon E5410 Qoed e 2,33 GHzx
2 and Linnx (kemel 2.6.18). The CAM(1) gimulation
ook from (0.2 ~1.5 [sec]. The computaticnal times of

* ind(i}. the CAM i ref ({Chemin and Honds,
2006) was emecuisd N, timee, and T, in
(Bquetion 10) is the totsl run time to get the sversge
fitryeas.

T - canle) s imdt) + 1GAC) » gent
Equation 9

TM _Nr. aT
Equation 10
04T,  1684000/122%0
= =- = T[]
n 15
Equation 11

Let N* be the population size required by the GA to
reach a certain target rolmion. Tn the worst case, the
tme gpeatt by the CAM with FLGA in onder
noietion is {Toy . N*) (Lobo, 2000}, which &
sbout N* times elower than a CAM withomt PLGA
that starts whth an optimel population sl=s. We
implemented wor CAM with PLGA (three
consccntive existing CAM methods) with an initial
population of 25 in the pixel GA and o population of
1000 end 1000 generations in the evaluation GA.
After 15 iterntione, FLGA finds thet the population
of 200 gtz the begt ftess withih & run thuwe of
arcurdl two weeks. Thia time is too long for real-
time applications. Howewver, the fitnees svahiation
of eech popoletion size (2, 4, 8, ..., NY) am
nﬂq:endmthﬁMmﬂlPLGA.'lhnl,npumﬂrlur
distributed implamestation can redoce the total
cormnpotetionel tdme and the emlustion G can be
repleced with amother PLGA. To confirm whether
thie method in practical, the CAM with PLGA wea
bnplementod oo s parallel comprating testhad, called
InTrigger (InTrigger, 2009}, with = toinl of 150 CPUY
cored. The run tims Bl to e ader of an honr
(about forr bours), Thus, from (Equstion 11), we
cnnuyﬂutthnpmllellmplmnhmﬂ.}mﬂl
150 CHUJ cores paine a 74% performance
improvemont (E) over thet of one CPU (T,). Thns,
the evaluation time boteneck for CAM with PLGA

btenatimal Fownal of Geoinformaes, Yol. 6, Mo, 4 Decetaber, 2010
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Most GA racarhers foous on the opemators’
(crossover, muintion ¢ic.) probability amd their
adaptation but not go much on population sl
{Lobo, 2000). However, population size is one of
the most crucial paremeters. Additionally, m the
existing CAM without FLGA, it 1s posgible 1o tracs
the miisble crossover probebility [0.1~09] md
muintion prohability [0.1-0.9] valnes throughout the
experiment. Howewer, it 1 relatdvely difficult to
mtheminblepopuhﬁonsim mnd genemtion
mmbers within a few Finding the hest
umbhaﬂnnufﬂlinad:nﬂmﬂnghmwhmm

et al, 2000} It seerms beier them PLGA in
parformance (Eiben and Scindt, 2008). However, if
the GA's perfrmance Is sensitve to thege mew
pammeters, such a parameter replacement con make
things woree, and it in etill onknown what their
effects e in the existing CAM without PLGA
implementation. The PLOA algorithm is emple and
more user frisndly. It keeps the GA out of & local
optitrmin el helps it meach the global opfitman
echition withont eny diffienity. Additionslly, PLGA
works well with fixed selsction presmirs, croseoves
probebility, end no motetion. Moreover, B3 was
proved i ref (Lobo, 2000), the PLGA approach is
good for finding eohitions in complex search
poblems, soch ez the minium Sedoer owe
problem, withont having to weorry sbout the GA
parameter poitings, Thie papes applies FLGA to the
protledn of ceop ssattrletion. Howevet, PLGA was
wsed in place of pixel GA gince the fHitneas value was
shown to be affected more by the poprlation size of
the pixel GA. The evalostion GA wey oot changed,
and hence, its contributicn to the time complexity
remained the sume in the experiment CAM with
FLGA overcomes the assimiletion problem of CAM
withont PLGA {Chemin snd Honds, 2006} with an
additional HSE imape from the end of the sesson
{Figure 10). Thus, the use of more HER. images will
help the L3R to comverge around the date.

The weight of the aseimilption fitneee is more
geered towarda HER. them to LSR. In the future, we
plmn to stndy a forion fimess equation that uscs
weiphts to balance the HSR and ISR contribotions,
&nnppuuhwmhwﬂwﬂhﬁepxelﬁ&mdm

FLGA perfors Inpresstvely with teal data, ad the
@uivomes are in an scoepisble range. However, the
totel comgartational time with this model is smach
lemages than thet of CAM withoot FLGA with known
opiimal GA parameters. A parallel end distribated
implementation can solve fhis problem Howenwver,
FLGA stll requires & proper load balance with e
(Grid Commibing 2009} with ite loge
carputationsl resomrces can redoce the nun tdme of
a province-sized experiment to just a few days.
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