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Abstract

This study developed a rule-based method for generating a landform classification map of an alluvial plain
Jor further assessment of flood susceptibility. Thresholds of the Modified Normalized Difference Water Index
(MNDWI) and land cover characteristics were extracted from Landsat and Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) data. Local relief, average elevation, and channel features
were calculated using a Shutitle Radar Topographic Mission Digital Elevation Model (SRTM DEM). Then,
relative position indices of polygons were used to classify small-scale landform objects. These inputs were
combined based on a rule. The landform classification map by this method was compared to a manual map by
visual interpretation. Significant consistence of dominated landform categories between the two maps
demonstrates the effectiveness of the rule-base method despite the limitation on spatial resolution of medium-
resolution data for detecting some small features. Moreover, the remarkable merits of the rule-based method

in comparison with the manual method are its relative time savings, objectivity, and ease of editing.

1. Introduction

A landform classification map plays an important
role in the study of the characteristics of many
natural phenomena because of the relationship
between landforms and these phenomena on a
small-scale (micro) landform level, for example, in
the case of floods, landslides, and erosion (Speight,
1990). In particular, it is useful for predicting flood-
prone areas because the evidence of past flood
events is preserved and remains as small-scale
landforms (Ova, 2001, Umitsu et al., 2006, Willige,
2007 and Lastra et al., 2008). The “small-scale”
term in this study indicates spatial extent (size of the
area and landform features) but spatial resolution. In
particular, the geomorphological method is effective
for developing countries where  hydro-
meteorological data for generating flood models are
usually limited. Ho and Umitsu (2011) developed an
integrated method for classifying small-scale
landforms in relation to flood inundation by visual
interpretation. This manual method used the 90-m-
resolution Shuttle Radar Topographic Mission
Digital Elevation Model (SRTM DEM) and Landsat
Enhanced Thematic Mapper Plus (ETM+) data,
Landform units of an alluvial plain were classified

by integrating information of elevation and terrain
relief detived from the SRTM DEM with spectral
characteristics derived from a pair of Landsat
images of dry and flood seasons. The results were
validated by field investigation, aerial photos,
topographic maps, and past-flood images. The
resulis revealed a close relationship between the
geomorphological  characteristics and flood
conditions in this area. Ho and Umitsu (2011) also
demonstrated the usefulness of SRTM and Landsat
data for geomorphological mapping in locations
where topographic and land cover data are
insufficient. However, manual landform
classification maps generated by  wvisual
interpretation rely on human interpretation although
they theoretically have more detail and high
accuracy. Automatic mapping of landforms using
DEMz and satellite images is more time-saving and
objective than the mamual method (Speight, 1974,
1990 and Van Westen, 1993). Mest previous studies
of automated landform classification have been
conducted on a large scale (¢.g., mountains, plateans,
floodplains) or have focused on mountainous or
high-elevation  areas  where  topographical
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differences are clear and evident (MacMillan et al.,
2000, Gallant et al, 2005, Drigut, and Blaschke,
2006, Twahashi et al., 2007, Klingseisen, et al., 2008
and Saadat et al., 2008). Studies of automated
landform classification maps in alluvial plains are
scarcer. The possible reason is the relatively low-
relief characteristic of alluvial plains. Thus, it is
difficult to extract landforms solely by the use of
DEMzs. Therefore, it is necessary to combine mmlti-
spectral/temporal data such as Landsat and ASTER
data that provide supplemental information about
land cover when used in combination with DEMs.
For the reasons above, this study makes an effort to
address that research challenge by proposing a rule-
based method for automatic mapping of small-scale
landforms in an alluvial plain using the SRTM DEM
with multi-spectral and multi-temporal remotely
sensed data.

2. Study Areas

The study area is the lower reach of the Vu Gia-Thu
Bon river plain in central Viemam including an
alluvial plain formed by fluvial processes in the
inland area and a coastal plain formed by aeolian
processes in the coastal zone, The twe rivers are
characterized by a braided and/or anagtomosing
pattern, In the lowest reach of the plain (the coastal
plain), there are sand dunes and bars that align
parallel with the coastline (Kubo, 2002). The supply
of sandy sediment dominates the river load and
governs the flow mechanism of the river as well as
its drainage. The central Vietnam receives the
highest rainfall in the entire country. The rainy
season is from September to December, and the dry
season is from January to August. The average
annual rainfall in the upland areas of the basin is
approximately 3,000 to 4,000 mm, which is much
higher than the annual rainfall in the coastal areas
(approximately from 1,500 to 2,000 mm) (Quang
Nam CFSC, 2009). The elevations of this plain are
no greater than 30 m.

3. Methodology

3.1 Data used and Preprocessing

The data used are described in Table 1. Only one
image in the rainy season (December 21, 2007) was
selected. Due to the fact that cloud coverage
notmally occurs in the rainy season, thig rainy-
season image showing clear moist surfaces without
the cloud coverage is very valuable for classifying
landforms in relation to flood inundation in this area.
The rest images are in the dry season. The time-
series images of the years 1973, 1990, 2001, and
2007 were chosen in comparable periods of time
(dry season) to understand dynamic changes in this
fluvial system governed by flooding from the past to
present. The ASTER image with the higher
resolution was used for obtaining land cover
characteristics. The SRTM DEM used in this study
is WRS (World Reference System) tile, 3 arc-
second (90-m) resolution, and filled-finished B set
in path/row size (path 124—row 049) with GeoTIFF
file format. The SRTM is known as the first ever
high-resolution near-global digital elevation data
and providing a consistent-quality to give
unprecedented opportunities for regional and global
applications. SRTM DEMs have proved huge
applications on geosciences, especially
geomorphology and hydrology (Zandbergen, 2008).
Before using SRTM data, pre-processing operations
are required. The height overestimation in the
SRTM DEM was eliminated over the entire plain by
comparing with topographic maps in bare and/or
sparse vegetated areas to determine the root mean
square error of elevations {Ho and Umitsu, 2011).
Then, to remove bias caused by trees and houses
from the SRTM elevations afier the elimination of
height overestimation, the estimated average height
of the coverage by trees and houses was subtracted
from the elevations within the areas of vegetation
and urban; the elevations of the other parts were

remained unchanged.

Table 1: Characteristics of the data used

Data Date Resolution (m) | Season
Landsat MSS June 3, 1973 80 dry
™ August 24, 1990 30 dry
ETM+ March 23, 2001 30 dry
ETM+ March 16, 2007 30 dry
ETM+ December 21, 2007 30 rainy
ASTER VNIR Janyary 31, 2003 15 dry
SRTM Febmary 2000 Wl
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The bias by trees and houses was estimated by
comparing the SRTM DEM with the 1:25,000
topographic maps of this area via the formula
reported by Reuter et al. (2008) as below.

55 = ZiTOPO _ ZiSRTM

Equation 1

3.2 Specification and Computation of the Inputs
According to Speight (1974), landforms are
determined primarily based on elevation, relief,
shape, size, orientation, contextual position, and
moisture regimes. Therefore, the following inputs
were used in this study:

- Classification of moist conditions by using the
Modified Normalized Difference Water Index
{MNDWTI) and land cover (LC) characteristics
derived from Landsat and ASTER data;

- Local relief of object edges (LRoE), average
elevation (AVE), and channel features
calculated from the SRTM DEM;

- Relative position indices including distances
from the centroids of non-water objects to the
river, the former river channel, and the dry
river bed (DIST) and the ratic of the border of
each object with the river, the former river
channel, and the dry river bed to the entire
border of non-water objects (RBR}.

3.2.1 Classification of moist conditions using the
MNDWI

The MNDWI by Xu (2006) can significantly help to
isolate water and moist areas from non-water
features and separate water-related areas from urban
and sand, which makes the MNDWTI better than the
original Normalized Difference Water Index

(NDWT) by McFeeters (1996).

Green— MIR
Green + MIR

MNDWT =

Equation 2

Ho et al., (2010) demonstrated the effectiveness of
the MNDWI for separating moist surface by using

thresholds: -1 £ MNDWLiywater < 0 £ MNDWLyq
sl < threshold £ MNDWlyy < 1 (Figure 1). This
finding suggests an effective method to isolate
flooded areas or water-saturated areas with a high
potential of being inundated in the rainy season
images. In the case of the Landsat images from
August 1990, March 2001, and March 2007 (dry
scason images), the MNDWI thresholds were
determined to isolate water from non-water areas for
extracting water bodies in each of those years. With
the Landsat MSS image of June 1973, the NIR band
(band 6) was sliced to determine the threshold to
separate river and lake arcas in that year. Because
the tarpet area is a low-lying alluvial plain, the
thresholds of elevation (greater than 30 m), local
relief’ (greater than 30 m), and slope (greater than
10%) {which are the modified definitions of
Speight, 1990) were applied to mask the high and
upland areas including mountains, hills, plateaus,
and upland basins (Figure 1).

3.2.2 Land cover classification and channel network
The ISODATA unsupervised classification of the
ASTER image was undertaken with 50 clusters.
Then, a reclassification process was performed to
generate six land cover categories: forest,
agricultural land, sandy soil, bare soil, wet land, and
urban. Althongh the more clusters the image is
divided into, the better the classified result may be,
50 clusters is appropriate to classify into the six land
cover types in this study.

3.2.3 Extraction of channel features (CFs)

Channels were also detected using the GRASS GIS
function called r.param.scale, which calculates and
classifies the terrain features: planar, pit, channel,
pass, ridge, and peak (Wood, 1996). The channel
exiraction performed by this function helped to
identify low depressions. These channel features
commonly represent channel morphologies such as
former river channel, dry river bed, and valley plain
areas. In particular, when such low depressions
cannot be isolated by the MNDWI classification,
land cover classification, or the composite Landsat
image, channel features help to separate non-water
polygons from areas of extremely low elevation
(low depressions) (Figure 2).

International Journal of Geoinformatics, Vol. 8, No. 4, December, 2012

29

27-38

Rule-Based Landform Classification by C ombiming Multi-Spectral/Tempaoral Satellite Data and the SRTM DEM




| Water (231
Mioisd seil 00 -0
Nonsmier = 0]

Figure 1: The original MNDWI image of the Landsat ETM+ from December 21, 2007, after the mountains
and hills were masked (a). The MNDWI image (b) was categorized into three classes: water (MNDWI 0.3-1),
moist soil (MNDWI 0-0.3), and non-water (MNDWI < 0),

I Vet sod (D030

b) Noasiscics) C) d)

Figure 2: The r.param.scale function can help to extract channel features (low depressions) () that are
difficult to be detected in the composite Landsat image (b), and they appear as non-water features in the
MNDWI classification (c).

3.2.4 Local relief o max z; the highest elevation value within a
Relief is defined ag a difference in elevation moving window C of defined sides 3 x3,5x 5
between the high and low points of a land surface, ... size) with a center i,

Local relief is the relief within a certain area (Coops e min z; the lowest ¢levation within this moving
et al,, 1998). window,

The local relief values were calculated by 2 3 x 3
square moving window. Local relief is a useful
parameter for identifying small-scale landforms
because it indicates differences in relative

localrelief = max z,—minz,
ieC ieC Equation 3
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elevations. Next, average local relief values were
calculated within the 120-meter internal buffers of
the edges of the non-water polygons.

3.2.5 Average elevation
Average clevation is defined as an average value
calculated for ¢ach target polygon,

1 1¢
Z=—(z,tz,+..+2)= —Zzi
n B jal

Equation 4
Z: the average elevation value.
n: the total number of pixels in the target polygon.
Z1, Zz ..., Zo: all of the elevation values of the target

polygon.

3.2.6 Relative position indices

Relative position indices indicate the contextual
position of each landform., The relative position
relies on the nature of landforms, for example,
natural levees are formed along rivers and/or former
river channels, whereas sand dunes are situated
parallel to the coastline, The relative position
indices were used to determine landform objects
that have similar characteristics of the above
indicators. Relative position indices are represented
by the distance to the river, former river channel or
dry river bed (DIST) and the ratio of the border of a
non-water object with the river to the entire border
of that object (RBR) (Figure 3). The RBR indicates
how much an object is covered by river, former
river charmel, and dry river bed areas.

length of border with river

length of the entire border
Equation 5

RBR =

3.3 The rule-based landform classification

The general process of the rule-based landform
classification was based on a hierarchical rule by
which pixels and objects are separated (Figure 4).
The landform categories were classified into three
groups: water, moist seil, and non-water areas. The
water group consists of permanent water including
rivers, lakes, and sea and temporal water stagnating
in low areas in the rainy season. The moist soil
group consists of low-lying landforms such as flood
basins (also back swamp, which is usually used for
paddy fields), valley plains, former river channels,
dry river beds, and inter-dune marsh. Such low-
lying surfaces wusually catch overbanking flow,
particularly in rainy seasons, thus, these landforms
are vulnerable to floeding. In addition, their primary

sediment material is clay, which can absorb and
maintain water and/or moisture. Therefore, these
surfaces commonly appear to be wetter than
neighboring higher areas, especially when the paddy
fields are not in the growing peried and witnessed as
bare-moist soil. In contrast, the non-water group
comprises high-lying arcas with frequently dry
conditions congisting of natural levees, terraces, and
sand dunes that do not become submerged in flood
time. Hence, the non-water landforms are
invulnerable te flooding (terraces and sand dunes)
ot, if they are submerged, are well drained (natural
levees). Also, their composition congists of silt and
sand as the main sediment materials, which means
that they are unlikely to hold water. Such
characteristics of these groups are more obvious in
the rainy season, when a large amount of rainfall is
concentrated on the plain (Ho and Umitsu, 2011).
Thus, the wetness of the landform surface is a
critical indicator for distinguishing these groups of
landforms in an alluvial plain. In short, small-scale
landforms (LF) are classified according to the
following rules:

¢ Permanent water (river and lake): if water is
indicated in all of the satellite data (MSS 1973
June, TM 1990 August, ETM+ 2001 March,
ETM+ 2007 March, and ETM+ 2007 December);

e Flood basgin (FB): if (moist soil in MNDWI of
BTM+ 2007 December) or (paddy field in the
land cover images of ASTER and ETM+ 2007
March),

e Natural levee (NL): if (non-water in MNDWI of
ETM+ 2007 December) and (RBR > threshold or
DIST < threshold or LRoE <2 or AVE < 3);

¢ Former river charmel (FRC): if (water in MSS
1973 June or TM 1990 August or ETM+ 2001
March) and (non-water in ETM+ 2007 March or
ETM+ 2007 December);

® Dry river bed (DRB): if (LF = chamnel) and (LC =
sand) and (adjacent to river);

e Valley plain (VP): if (LF = channel) and (LF #
former river channel and LF # dry river bed);

e Sand dune (SD): if (non-water in ETM+ 2007
December) and (LC dominated by sand} and (2 <
LRoE <3 and DIST > threshold); and

e Terrace (TR): if (non-water in ETM+ 2007
December) and (RBR < threshold and DIST >
threshold);

oelse if 3 < LRoE < 4; lower terrace (LTR)
oelse if 4 < LRoE < §: middle terrace (MTR)
oelse if LRoE > 5: higher terrace (HTR)
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Natural_levee Lower_terrace
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Il Former_river_course

s Border with river, DRB, FRC
== Barder with the others (not river, DRB, FRC)

Figure 3: Distance to river indicates the minimum distance from the centroid of a non-water object to the
nearest river, former river channel, or dry river bed objects. The percentage of the total border that borders a
river, former river, or dry river (RBR) indicates the water-bordering fraction of a non-water object by dividing
the water-bordering length of the border by the entire border length of the object. The DIST and RBR. were
used to distinguish natural levees from the other non-water features (terraces, sand dunes). See the detailed
rules of the classification in the section 3.3.

Masks of
mountains, hills,
plateaus, and
Masking upland basins
mountains, -Local relief
hills. plateaus,
Landsat, and upland -Land cover
ASTER, basins by -Relative
SRTM SRTM position
DEM elevation 2 indices

Matural levees

Terraces {higher
middle, lower

30m, local
relief = 30m, Sand dune ]
slope 2 10%

Thresholds

of MNDWI Flood basin

07Dec -Thresholds of
MMDWI of band ;
6 of past images Formar rivar
channel
-Land cover

Dry river bed

~r.param.scale
P Valley plain

River and lake

Figure 4: The flow chart for the rule-based classification of small-scale landforms

The thresholds of LRoE, RBR, DIST, and AVE The LRoE threshold was determined depending on
were set based on the characteristics of each the relative height of each terrace type (lower,
landform feature in this area. These indices can be middle, and higher) that is measured in field and
applied for other areas but need to adjust the from the topographic map in this study area. The
thresholds depending on the features of landforms in local relief indicates the relative elevation.

each area.
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High values of the local relief indicate local scarp of
an elevated object whereas its low values indicate
the relatively flat surface. Thus, it is used to identify
elevation-homogeneous elevated surface such as
terraces. The RBR and DIST thresholds were set
among non-water and ¢levated landform features
(terraces, sand dunes, and natural levees) after being
classified by MNDWI classification and LRoE
thresholding. The RBR indicates the coverage
degree of a river with a landform object; particularly
this index is useful to recognize natural levees. In
common, natural levees situate along two sides of a
river, as a result empirically about more than two-
third portion of their border embedded by a river.
Thus, the thresholds of RBR are more than 30%.
The DIST index is also useful to identify natural
levees that have elongate shape but have
uncontinuous borders with a river. Meanwhile the
RBR index is more appropriate to distinguish
natural levees that have shorter and larger shape and
have continuous border with a river. The threshold
of DIST is less than approximately 5 pixels
equivalent to 150 m with 30 m grid size in this area.
The AVE threshold was applied for natural levees
sitnated near deltaic low land near the estuary of the
Thu Bon river, Although the rule-based small-scale
landform classification in this study is primarily
object-based, the salt and pepper effect results from
the pixel-based steps of MNDWI classification,
river extraction, and land cover classification.
Therefore, the rule-based landform classification
result was smoothed using the majority method by
filtering the most frequently cccurring value within
the 5 x 5 moving window. Despite the availability of
advanced techniques to reduce the “salt and pepper™
effect such as Markov Random Field and image
segmentation, we did not concentrate on this matter
because the main objective of this study is
proposing a framework of the rule-based landform
classification. Moreover, the majority filter provided
acceptable and reasonable accuracy in the previous
studies and this study as well.

4. Results and Discussion

4.1 Evaluation of the Rule-Based Landform
Classification Method

The rule-based landform classification method was

evaluated by comparing the statistics of the

MNDWI classification with the landform categories

of the manual LCM and local relief. The

comparisons in Table 2 demonstrate that the

MNDWI works well for separating the

representative groups and identifying polygon
boundaries in the early stages of applying the
method because of its good correlation with the
manual LCM categories and local relief ranges.
First, the non-water, moist soil, and water categories
of the MNDWI classification were compared
visually with the manual LCM, Figure § indicates
that the moist soil arcas have a high coincidence
with the flood basin and valley plain of the manual
LCM, which are commonly submerged during times
of flooding. For quantitative evaluation, the
categories of non-water, moist so0il, and water
determined by the MNDWI classification in the
December 2007 Landsat image were compared with
the three landform proups in the manual landform
classification map and two ranges of local relief
(Table 2). Table 2 reveals good agreement between
the MNDWI classification results and the landform
groups on the manual landform classification map.
The percentage of agreement between the moist soil
class and the landform groups of FB, VL, FRC, and
DRB on the manual map is 79.74%, whereas the
agreement between the non-water class and the
landform groups of NL, TR, and SD on the manual
map is 68.49%. The former group is located at low
elevations and has a high inundation potential,
whereas the latter group is at high elevations and
has a low inundation potential in the rainy season.
On the one hand, a comparison of moist soil and
non-water arcas and local relief shows that the moist
soil class covers only 19.62% of local relief values 2
> m, whereas moist soil covers 80.38% of local
relief values £ 2 m. The non-water class covers
34.62% of local relief values > 2 m and 65.38% of
local relief values < 2 m. From these numbers, it can
be inferred that most of the high local relief values
are distributed within the non-water class and that
such high local relief values exist at the boundaries
of polygons. On the other hand, a large amount of
local relief values < 2 m belongs to the non-water
class because the inner areas of the non-water
features (terraces, natural levees, and sand dumes),
with the exception of the boundaries of the
polygons, are commonly flat, and hence the local
relief of such inner areas is usually low. In general,
although the low local relief values (< 2 m)
dominate in either the non-water or the moist soil
class because of the flatness and low relief of most
of the landform surfaces in the alluvial plain, high
local relief vahies (> 2 m) are more dominant in the
non-water class (distributing at the edges of the non-
water features) than in the moist soil class,
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Table 2; Statistics of the non-water, moist goil, and water classes of MNDWI
classification compared with landform categories and local relief

MNDWI claggification
Nen-water (%) | Moist soil (%) Water (%)
Mamal LCM | Flood basin, valley plain, former | 29.89 79.74 19.55
river channel and dry riverbed
Natural levee, terrace and sand 68.49 17.03 8.34
dune
River and lake 1.62 3.23 72.11
Local relief <2m 65.38 20.38
>2m 34.62 19.62

4.2 The Rule-Based Landform Classification Map
The scale of the mle-based landform classification
map is designated based on the pixel size of Landsat
TM/ETMH+ (30 m). According to Hengl (2006), the
cell size is equal to 0.5 mm on a paper map. In other
words, the 30-m resolution of the grid of the rule-
based map corresponds to a 1:60,000-scale map.
The “meuntain and hill” category did not exist in
the rule-based landform classification map becanse
it was masked, as described previously. The same
mask was applied to the manual map to make it
consistent with the rule-based map. However,
several areas of mountain and hill remained on the
manual map.

4.3 Comparing the Rule-Based Landform
Classification Maps with the Manual One

Small-scale landform features of the rule-based
LCM were compared with those of the manual LCM
that was validated by Ho and Umitsu (2011). These
two maps were compared by considering only the
landform categories existing on both maps. The
rule-based LCM shows a high correlation with the
manual LCM by visual comparison (Figure 6). The
overall similarity of the rule-based map compared to
the manual one is 58.1% dome by the overlay
statistical method. This modest accuracy is resulted
from 1) the subjectivity existing in the mamual map
that is overcome by the rule-based method and 2)
the limitations and difficultics of the rule-based
mapping method for identifying small objects. The
discussion focuses on the main landform categeries
that dominate this alluvial plain and contribute to
explain the flood inundation conditions such as
terraces, flood basin, natural levees, sand dunes
(high accuracy), former tiver charmel, dry river bed,

and wvalley plain (lower accuracy). The high-
accuracy group has significant similarities, which
demonstrates the efficiency of the rule-based
method for the landform classification. The lower-
accuracy group accounts for the modesty of the
overall similarity, In other words, it indicates the
limitation and difficulties of the rule-based mapping
method using medium resolution data. In addition,
the lower-accuracy group also reveals the
subjectivity of landform classification by the manual
method.  Although the manual landform
clagsification map was validated with 90% accuracy
by the field investigation combined with aerial
photos and topographic maps (Ho and Umitsu,
2011), there are some features and/or objects that
make confusing. Those can be identified evidently
by the rule-based process. Because Ho and Umitsu
(2011} investigated and verified randomly around
the study area where the authors could access, and
allocated most of the categories of the landform but
did not cover all of objects. Therefore, for instance,
the large areas of each level of terraces were
investigated, but the other small parts of terraces
were paid less attention. In other studies (Speight,
1974, 1990 and Van Westen, 1993) and our opinion,
the field investigation, interpretation of aerial
photos, and topographic maps are the key processes
of the manual method, but at the same time, are
affected by human subjectivity. Furthermore, the
boundary delineation of the landform cbjects by the
manual methed normslly relies on the interpretation
and experiences of the person creating the map
(Klingseisen et al., 2008). Therefore, even the
manual map was validated, its boundary delineation
has a certain degree of subjectivity. These
shortcomings can be overcome by the rule-based
method.
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Figure 5: The left-hand side shows the MNDWI after categorization into three classes, and the right-hand side
shows the manual landform classification map, With the exception of permanent water such as rivers and
channels, we can see only temporal water in the moist soil areas. The blue (temporal water) and green parts
(moist so0il) of the MNDWI image coincide well with the fleod basin in the manual landform classification
map. The yellow areas (non-water) in the left-hand image have patterns similar to those indicating the natural
levees and terraces in the right-hand map

The rule-based map The manual map

mm

B vouniain and hil B Valley plain Inter-dune massh

N Higher terrace Matural levee 0 sand dune
Middle terrace I Flood basin Lower sand duna
Lower terrace W Former river course Il Permanant water
Mask mountainana bl Dry river bed Sen

Figure 6: The rule-based small-scale landform classification map (left) compared to the manual map (right).
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Figure 7; The lower terrace (the upper red circle) was classified on the rule-based LCM (right), but it appears
as a middle terrace on the manual LCM (left). The cross section derived from the SRTM DEM affirms that
the average level of this lower terrace (the lower red circle) is lower than that of the middle and higher

terraces.

4.3.1 Extraction of Terraces

The similarity of terraces between the rule-based
and manual LCMs is 37.9% for the higher terrace,
66.7% for the middle terrace, and 57.5% for the
lower terraces. Misclassification may occur among
higher, middle, and lower terraces of the manual
LCM, which can cause low accuracy for each
terrace classification of the rule-based LCM.
However, these misclassifications are likely caused
by the subjective interpretation of various levels of
terraces when creating the manual map. Figure 7
presents an example of the misclassification of a
lower terrace. Another statistic by comparing the
total area of the terraces of the rule-based LCM with
that of the manual LCM reveals that the total
gimilarity of the terraces is higher than 8C%. The
classification of terrace levels is a challenge. In
common, most of the landform categories are rather
evident to distinguish because their characteristics
are clear, Nevertheless, the cases between lower and
middle terraces and between lower terraces and
natyral levees are special and more difficult to
classify even by using acrial photo stereo-scoping

although  their separation is crucial for
understanding flood conditions of a floodplain.

4.3.2 Extraction of Flood Basins and
Natural Levees

The accuracy of the flood basin classification of the
rule-based LCM is 67.4%, and the misclassification
of the flood basin as the valley plain and the former
river channel is 5.1% and 4.7%, respectively, on the
manual LCM. However, the flood-affected degree
of the valley plain and the former river channel is
similar the flood ©basin. Therefore, this
misclassification causes inconsiderable problems in
the prediction of flood susceptibility. The rate of
misclassification of the flood basin as the natural
levee is 17.2%. Such natural levees are small and
narrow. They appear as moist soil in the MNDWI
classification, are usually submerged in times of
flooding, and are not useful for human settlement.
Thus, this migclassification is also unremarkable for
the goal of flood assessment.
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4.3.3 Extraction of sand dunes
The comparison demonstrated that sand dunes on
the rule-based map have 87.5% coincidence with
those on the manual map. This high agreement is a
result of the stability, large size, and clear
boundaries of the sand dunes.

4.3.4 Extraction of River Networks, Former River
Channels, Dry River beds and Valley Plains

The river network determined by mmlti-temporal
images was classified more precisely than those on
the manual map based on a single-year image. The
recent river metwork can be extracted from the
present images or the newest image of a dataset. Dry
river beds and former river channels have modest
accuracies due to the limitation on the data used
resolution. Those two landform categories
commonly comprises small objects that are difficult
to be extracted based on the SRTM DEM and
Landsat data, but can be identified by visual
interpretation. However, the larger objects of dry
river beds and former river channels can be
identified advantageously and subjectively by the
past river network, which can be derived from the
past images. Valley plains on the two maps were
visually compared and showed good coincidence
with the channel feature by the function
r.param.scale in spite of less similarity with that of
the manual map.

5. Conclusions

The rule-based landform classification method
achieved by combining the SRTM DEM and multi-
temporal satellite images is effective and promising
for classifying small-scale landforms in alluvial
plains. Furthermore, this rule-based method is
objective, simple to edit, and gaves much more time
than the manual method. The remarkable advantage
of this method is that it produces more objective
classifications than a manual method because it
quantifies the characteristics derived from satellite
images and the SRTM DEM. Mountains and hills
are defined (masked) by thresholds of elevation,
local relief, and slope, and thus more reliable. Sand
dumes are identified with high accuracy. Terraces
are separated objectively by local relief and average
elevation. Flood basins are classified in close
relationship to the moist condition, which makes the
data convenient for predicting areas that might be
affected by flooding. The use of multi-temporal
satellite images helps to classify river network more
precigely and to identify dry river beds and former
river channel areas effectively, However, limitations
on the spatial resolution of satellite data and the

SRTM DEM create difficulty in identifying small-
size landforms such as narrow rivers, former river
channels, dry river beds, and parrow natural levees
that can be identified well by visual interpretation.
These limitations have only insignificant effects on
the prediction of areas that are susceptible to
flooding. Thus, this methed is effective and suitable
for flood hazard assessment. In particular, this
method would be useful in developing countrics
because it enables the creation of landform
classification maps that are consistent with manual
LCMz by visual interpretation.
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