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Abstract

In the field of geology, many gridding algorithms have been proposed so far. However, most of all algorithms
take into account only equality constraints from elevation data. In this paper, we propose a gridding
algorithm toking into account equality-inequality constraints from elevation data and trend data. The
algorithm is designed to approximate a surface by bi-cubic B-spline and iv determine an optimal surface
using the exterior penalty function method. The optimal surface is the smoothest one that satisfies the given
constraints. Through griddings for simple data sets, it is confirmed that the algorithm enables us to use
elevation data and trend data as equality-inequality constraints on geological surfaces. Additionally, through
griddings for practical data, it is confirmed that the algorithm is useful io determine a form of geological
boundary surface, and that we can obtain an optimal surface even if we have a large number of constrainis.

In conclusion, this algorithm is more practicable than the one proposed before.

1. Introduction

In the field of geology, point data obtained from
field survey are often scattered randomly. In order
to interpret the data accurately and to utilize them in
practice, we need to perform a gridding. Gridding is
a process of interpolating scattered data and creating
a regular grid. The work here is of a gridding
algorithm taking into account equality-inequality
constraints from elevation data and trend data. So
far many studies have been conducted on gridding
algorithms (e.g. Pelto et al.,, 1968, Franke, 1982a,
Hutchinson, 1989 and Abbass, 1990). There are two
types of popular gridding algorithms. One is a

kriging (e.g. Krige, 1951, Matheron, 1963,
Burrough, 1986, Oliver and Webster, 1990, Cressie,

1993 and Wackernagel, 1995), the other is a spline-
fitting (e.g. de Boor, 1962, Bhattacharyya, 1969,
Briggs, 1974, Franke, 1982b, Inoue, 1986 and
Wahba, 1990). The correspondence between kriging
and spline-fitting has been pointed out in several
papers (e.g. Kimeldorf and Wazhba, 1970, Matheron,
1981, Dubrule, 1984, Wahba, 1990, Cressie, 1993
and Laslett, 1994). In most of all gridding algorithm
of geological surfaces, available scattered data are
limited to clevation data obtained from drilling
survey or geological reconnaissance. Additionally,

the elevation data are used as equality constraints on
a form of geological surface. However, the
algorithims  taking into account only equality
constraints from elevation data are impracticable.
The purpose of this study is to develop a more
practicable gridding algorithm. In this paper, we
propose a pridding algorithm taking into account
equality-inequality constraints from elevation data
and trend data. This algorithm belongs to the spline-
fitting. The algorithm is designed to approximate an
objective surface by bi-cubic B-spline, to determine
an optimal solution using the exterior penalty
function method and to create a regular grid
Through some gridding examples using constraints
from elevation data and trend data, an availability of
the algorithm is confirmed. We conclude from those
examples that the algorithm is more practicable than
the one proposed before,

2. Formulation of Geological Surface and
Constraints

2.1 Bi-cubic B-spline Surface

A geological surface often has continuity over a

wide rtange. There are two major method to

apptoximate a geological surface. One is a method
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based on geostatistics (kriging). The other is a
method based on spline function, In a case of
kriging, a result sometimes makes a big change of
the surface in a local range. In & case of spline, a
result has a continuity over a wide range. For this
reason, we approximate a geological surface by a bi-
cubic B-gpline as taken up by de Boor (1962) and
Inoue (1986). Suppose that a surface can be
expressed in z = f (x, ). Let Q =0, x ), be a
rectangular domain in x-y plane. Let M, and M, be
the numbers of sections that constitute 2, and €,
respectively (Figure 1). The surface f(x, y) in £2 can
be expressed in a quadratic form:

My+3My+3
fey)= X j§1 & j NN ;(3)

i=l
Equation 1

where N; (x), &; ( y) are normalized cubic B-spline
bases with respect to x, y respectively, and c; are the
constants, An increase in M, and M, will lead to an
increage in capacity to express surface.

2.2 Constraints from Elevation Daia

and Trend Data
Elevation data and trend data are used as constraints
on a form of surface. Suppose that an elevation z, is
obtained at a point (x,, ;). A possible constraint
from the point is as follow:

f(xpsyp)_zp =0

Equation 2a
f(xpsyp)_zp <0

Equation 2b
f(xpnyp)_zp >0

Equation 2¢

Equality constraint (2a) is used in cases that the
surface passes through the point. Inequality
constraint (2b) is used in cases that the surface
passes under the point. Inequality constraint (2¢) is
used in cases that the surface passes above the point.
Let ¢ be an azimuth direction of maximum slope of
the surface. ¢is measured clockwise from north. Let
Obe a slope angle of the surface. Suppose that the
azimuth direction and slope angle (g, &) is
obtained at a point (x;, y,). A possible constraint
from the point is as fellow:

Fx(xg.yq) +eingdgtanfy =0
Equation 3a
fy(xq,yq) +cos¢q tanﬂq =0

Equation 3b

Figure 1: Bi-cubic B-spline function f(x, y) in domain Q
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3. Methodology for Determining an

Optimal Surface
3.1 Constrained Optimization Problem and

Criteria for Solution

There may be many feasible solutions that satisfy
the ecquality-inequality constraints. In order to
determing an optimal surface, we solve a
constrained optimization problem based on the
observational data. In general, the constrained
optimization problem is defined as follows: Find a
vector x = (x, x3, ..., x,;) that minimizes a function:

J(x) xeFcR"
Equation 4a
subject to:
gx)=0  (=1,2,..,mp)
Equation 4b
RSO (j=1,2,..,m)
Equation 4c

where J (x), g; (x) and & (x) are all continuously
differentiable function and F is a feasible region. J
(x) is usually called objective fimction. mg and m;
are the numbers of equality constraints and
inequality constraints respectively. The objective
function and equality-inequality constraints could be
linear or nonlinear in the problem. There are two
major solution methods to the constrained problem:
(1) Lagrange multiplier method (Kuhn and Tucker,
1951, Dubrule and Kostov, 1986 and Kostov and
Dubrule, 1986, etc.) and (2) Exterior penalty
function method (Zangwill, 1967, Fletcher, 2000
and Yeniay 2003, etc.). The outlines of each method
are summarized below.

3.1 Lagrange Multiplier Method

Lagrange multiplier method i3 one of the metheds
that transform the constrained optimization problem
into unconstrained minimization problem. For a
simple explanation, we describe a solution only
taking into account equality consiraints. As for a
soluticn taking into account inequality constraints,
see Kuhn and Tucker (1951), Dubrule and Kostov
(1986), Kostov and Dubrule (1986) and ctc.. In this

method, a new vector 4 = (A, Az, ..., Amy) called
Lagrange muitiplier is introduced.

Further, a new objective function called Lagrangian
Junction is defined as follows:
Mg
L(x ,4) = J(x) + 'El A gi(x)
1=

Equation 5

An optimal solution is determined by vectors x and
A that minimize L (x, A). The vectors x and A are

given as a sclution to the equation:
&L oL oL &L
SmdL = L | ’ yo =40
[ax 1 &, 04 2 ]
Equation 6

An advantage of Lagrange multiplier method is that
we can obtain an exact optimal solution to the
constrained problem. However, in this method, the
number of unknowns in (6) depends on not only an
order of x but also the number of comstraints mg.
Thus, we cannot solve the original constrained
prablem when there is a large nmumber of a
congiraint,

3.2 Exterior Penalty Function Method

An exterior penalty fimction method is also one of
the transformation methods. In this method, a new
constant & (> 0) called penaily parameter is
introduced. Further, an augmented objective
Junction is defined as follows:

O{x , @) = J(x)+a R{x)

Equation 7

where R{x) is called an exterior penaity function.
R(x) is generally formed from a sum of squares of
constraint violations:
0 xeF
Rey= ?_.f[g,-(x)]ﬁ +;§'1[mm(o,h-(xn]” xeF

Equation 8

where #is commenly 1 or 2. An optimal solution is
determined given by a vector x that minimizes O(x ,
a). The vector x is given as a solution to the
equation:
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mdg:[ﬂ, ac}o
&%y % p

Equation 9

A parameter o determines the magnitude of the
penalty for the constraint violations. When « is too
gmall, an optimal vector x will not be in the feasible
region F. When « is too large, it prevents to search
unfeasible region. Traditionally, in order to find a
suitable value of « and to cbtain an x close to F, we
solve a sequence of unconstrained problems:

Minimize Q(x, @)= J(x)+a; R(x)

Equation 10

where {a;}, £=0,1, 2, ... is a sequence of penalties
that satisfy 0 < er; < @ g and a ; — . Let x* be a
solution to the problem: Min O(x, @ ). When a; —>
o, the solution x® tends to converge to the optimal
solution to the constrained problem. The solution
determined by the exterior penalty function method
is not as exact as the one determined by Lagrange
multiplier method. However, the solution becomes
close to exact one when « is suitably large, The
number of unknowns in the equation (9) does not
depend on the number of constraints. In contrast to
Lagrange multiplier method, we can solve the
otiginal constrained problem even if there is a large
number of a constraint. In order to improve
accuracy of quantitative geological analysis, we will
need a large number of data. For this reason, in the
present algorithm, the exterior penalty function
method is used for optimal surface determination.

3.2 Determination of an Optimal

Geological Surface
We assume that an optimal surface must be the
smoothest one among the feasible solutions and
consider a gridding as a constrained optimization
problem: Find a surface £ {x, ») that minimizes an
objective function:

2 2
BEGIEZ
o) "\
2.\2 2 N\ ¢ 3 \2
- ﬁﬂ[[;_;] {2 () ]m,,

Equation 11

Ify=m lIq

subject to the constraints (2a), (2b), (2¢), (3a) and
(3b). In order to solve the problem above, we
introduce an augmented objective function:

S a) = J(f)+a R(f)
Equation 12

where J ( f ) cvaluates the smoothmess of the
surface, R ( ) evaluates the degree of violation of
constraints and & controls a weight balance between
J{f)and R ( f). R (f) is defined in a form of
residual mean of squares:

N
1 ﬂ* 2
R(f)=— L &p

¥
"'ﬁ g[(fx{"q-l’w)”h‘q ‘“91)2 +("y(-'q'-"§)+°°"§ ““‘"q)z]

Equation 13

where &, is a residual with respect to elevation data:

fEpyp)-2p +for equality constraint (28)
£p =max (xp.yp)—zp.l]} ; for inequality constraint (2b)
min (xp,yp)—zp,ﬂ ; for mequality constraint {2c)
Equation 14

Np is the number of equality-inequality constraints
from elevation data, ng is the number of constraints
that give g = 0, Np is the number of constraints
from trend data and y is another penalty parameter
that controls a weight balance between elevation
data and trend data. An optimal surface is given by a
vector e = (Cn, C12y eey 0%4.3’%.4.3) that minimizes Q
( f, @). Substituting (1) into (12), we obtain a
simultaneous equation:

ag ag ag &g
gud Q=] 2 ... -g
Gl %ap31 % ae3 a3 Myl
Equation 15

The optimal vector ¢ is determined by an iterative
calculation with an increasing sequence of penalties
{e1, @, ..., Gy} The k-th element of the sequence
is given by:

k-1

“‘NITR NlTR—l
ak = X a

(k=1)2l"')NITR)

Equation 16
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where Ny is the number of iteration, &, is an initial
penalty and ey is a final penalty. An increase in
a will lead to a decrsase in smoothness of the
surface and in degree of violation of constraints.

4. Examples
4.1Calculation only using Equality Constraints from
Elevation Data

We coded the algorithm described above in
FORTRAN77 and perform a gridding only using
equality constraints modified from TABLE 5.11 in
Davis (1986). Figure 2(a) shows a distribution map
of the elevation data. Domain  for gridding is [0,
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325] x [0, 325]. Parameters in calculation are as
follows: M. =M, =25 m=0,and m,=1.

Figure 2(b), 2(c), and 2(d) show contour maps of the
caleulated surfaces when e =10, a=10?, and a =
10* respectively. A black dot on the map means a
location of the data. Numerical value near the
symbol is elevation at the point. The result shows
that penalty @ controls a balance between
smoothness of the surface and degree of violation of
constraints and that the calculated surface is
gradually revised to satisfy the constraints along
with the increase of . When = 10%, R(f) is 2.78
x 10°° (RMS error of unsatisfied elevation data is

1.67 x 10'%). Considering digits of elevation data, we
can conclude that the calculated surface is feasible.
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Figure 2: Gridding examples using equality constraints, (a) distribution map of the data, (b) @= 102,
(c) @= 10", and (d) & = 10*. Elevation data are modified from TABLE 5.11 in Davis (1986)
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4.2 Caleulation using Equality-Inequality
Constraints from Elevation Data

Figure 3 shows a gridding example using equality-
inequality constraints from elevation data. A down-
pointing triangle on the map means a location of the
data that provides inequality constraints (2b). An
up-pointing triangle means a location of the data
that provides inequality constraints {2¢). Domain
for gridding is [0, 100] x [0, 100]. Parameters in
calculation are as follows: M; = M, = 10, g, = 1,
Oex = 10%, N = 10, m1; =0, and m, = 1, When @ =
10%, R(£) is 2.79 x 107 (RMS error of unsatisfied
elevation data is 1.67 x 10), The result shows that
inequality constraints control the shape of surface in
the east and west part as well as equality constraints
in central part.

4.3 Calculation using Constrainis from Trend Data

Figure 4 shows a gridding example using constraints
from trend date. In this example, the equality
constraints from elevation data are only z = 50. A
symbol of dip data is given by a long bar and short
spike perpendicular to the long bar. Short spike
means the azimuth direction of maximum slope.
Numerical value in parenthesis near the symbol of
dip data is slope angle. For example, a symbol near
the upper-right corner means ¢ =275 and & = 45,
Domain £} for gridding is [0, 100] x [0, 50].
Parameters in calculation are as follows: M, = M, =
10, @=10%, y=10?, m; = 0, and m, = 1. RMS error
of unsatisfied elevation data is 1.12 x 10*. RMS

®

00—
0 ] 50 50
v - - ™

50 1
2 ¢ 2 v
I I L i |
UU 50 100

error of unsatisfied trend data is 1.51 x 107, The
result shows that the constraints from trend data
control the shape of surface as well ay the
constraints from elevation data.

4.4 Calculation using all Types of Constraints
Figure 5 shows a gridding example using all types
of constraints from elevation data and trend data.
Domain Q for gridding is [0, 100] x [, 100].
Parameters in calculation are as follows: M, = M, =
10, Gomin = 1, Onax = 107, Npr = 10, 7= 10*, m; = 0,
and n; = 1. RMS error of unsatisfied elevation data
is 1.47 x 10°°, RMS error of unsatisfied trend data is
6.45 x 10° The result shows that the optimal
surface satisfies all types of constraints in
numerically as well as in visually.

§. Applications
5.1Trend Data Derived from Geological
Reconnaissance

The algorithm is helpful to determine a form of
geological boundary surface. One practical example
is a surface fitting to strike-dip data derived from
geological recomnaissance. Figure 6 shows a
gridding result using constraints only from strike-
dip data digitized from a scanned geological map. It
is easy to see an outline of folding structure and
local variation of strike-dip. Such a result will be

useful for geomorphological analyses and
hydrological analyses.
®
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Figure 3: Gridding example using equality-inequality constrainis. {a) distribution map of the data,
(b) contour map of generated DEM
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Figure 4: Gridding example using constraints from trend data. (a} distribution map of the data,
(b) 2D visualization of generated DEM, (c) 3D visuelization of generated DEM
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Figure 5: Gridding example using constraints from elevation data and trend data.
(a) distribution map of the data, (b) contour map of generated DEM
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Figure 6: Utilization of strike-dip data digitized from a geclogical map.
(a) 2D visualization of generated DEM, (b) 3D visualization of generated DEM

5.2 Elevation Data Derived from Drilling Cores
Drilling cores are quite helpful to understand a
subsurface condition, especially a form of
geclogical boundary surface. There are many
drilling cores in urban arca, However, most of all
cores do not reach so deep part. In an analysis of
deep part, there is a limit to the number of available
cores. In such a case, we should use the drilling
cores in shallow part as inequality constraints (2b).
Figure 7 shows an example of geological surface
determined by the constraints derived from drilling
cores. In the figure 7(b) and 7(d), there are enough
differences between two surfaces around dashed
circles. This result shows that the drilling cores in
shallow part are effectively used as well as the ones
in deep part. The algorithm has a capability of using
existing drilling cores more effectively than
previcus algorithms. Further, combination of
inequality constraints from drilling cores and strike-
dip data from geological reconnaissance must be
quite useful for 3D geological modeling based on
geological boundary surfaces.

5.3 Topographic Map

Another practical application is the STRIPE method
(Noumi, 2003), The STRIPE method is a way to
generate DEM from a scanned topographic map. In
general, intercontour areas constitute a large
portion of a topographic map, An elevation £ (x,, 3,)
at a point (x,, y,) within an area between two

successive contours z = z; and z = 2, (z; < 2z} must
satisfy inequality constraints:

z1 <f (% Vo) <22

Thus, we can create a large number of inequality
constraints on f (x, y) from 2 scanned topographic
map. The number of constraints depends on a
dengity of contouts and on a pixel size of the map.
Based on this concept, we generated a DEM from a
scanned schematic topographic map (Figure 8). The
pixels size of the map is 3000 x 3000. The number
of inequality constraints created from the map is
14,691,658. The contour interval is 10m. Domain
for gridding is [0, 3000] x [0, 3000]. Parameters in
calculation are as follows: M, = M, = 200, @y, = 1,
Omex = 10", Nim = 500, 1, = 0, and m; = 1. Figure
8(b) and 8(c) are contour maps of the generated
DEM when a= 6.16 x 10*. The result clearly shows
that the calculated contour maps reproduced the
original scanned topographic map accurately. In this
case, RMS error of unsatisfied constraints is 1.33m.
As stated in chapter 3.1, in the exterior penalty
fimction method, the number of unknowns in the
simultaneous equation (15) does not depend on the
number of constraints. This enables us to determine
an optimal solution even if there is a large number
of a constraint.
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Figure 7: Effectiveness of the inequality constraints. (a} distribution map of drilling cores in deep part,
{b) surface determined only by equality constraints from drilling cores in deep part,
{c) distributicn map of drilling cores in shallow part and deep part, (d) surface determined by
equality-inequality constraints from drilling cores in shallow part and deep part

6. Conclusion

We presented a gridding algorithm taking into
account equality-inequality constraints from
clevation data and trend data. The presented
algorithm is designed to approximate a surface by a
bi-cubic B-spline, to determine a optimal surface
based on the exterior penalty function method and to
create a regular grid.

In order to confirm an availability of the algorithm,
we carried out calculations for several types of input
data. Through four examples for elevation data and
trend data, it is confirmed that all types of data are
available as expected.
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Figure 8: Generation of DEM using a large number of constraints. (a) scanned topographic map {(Geospatial
Information Authority of Japan, 2001), (b) contour map of generated DEM
and (c) 3D visualization of generated DEM.

Through calculations using geological
reconnaissance data and drilling core data, it is
confirmed that the algorithm is useful to determine a
form of geological boundary surface. Through
calculation using topographic map, it is confirmed
that we can obtain an optimal surface even if we
have a large number of constraints. From these
results, we conclude that the presented algorithm is
more practicable than the one proposed before. At
this moment, available input data are limited to
elevation data and trend data. However, two types of
input data are insufficient to determine a form of

geological boundary surface with a high accuracy
and to understand a subsurface condition. The topic
of further study is to increase types of available
data, especially to make cross-section data available.
As for output, a calculated surface can be saved in
two types of files, One is a file for bi-cubic B-spline
function of the optimal surface. The file includes
informaticn for giving the equation (1). The other is
a file for DEM. Both files have unique formats. The
use of umique formats will be a big limiting factor in
interoperation with other systems such as GISs,
Web-GISs, and 3D geological modeling systems.
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In order to sclve this problem, we need to prepare
some major types of files for output data. In
addition, the developed FORTRAN program is
operational only in CUI (Character User Interface).
It will be a limiting factor in dissemination of the
program, Angther topic of further study is to code
the algorithm in more popular language and to
enhance interfaces of the program,
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